Floor response spectra in RC frame structures designed according to Eurocode 8
详细信息    查看全文
  • 作者:C. Petrone ; G. Magliulo ; G. Manfredi
  • 关键词:Floor spectra ; Floor acceleration ; Nonstructural components ; Building codes ; Seismic demand
  • 刊名:Bulletin of Earthquake Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:14
  • 期:3
  • 页码:747-767
  • 全文大小:993 KB
  • 参考文献:Ambraseys N, Smit P, Sigbjornsson R, Suhadolc P, Margaris B (2002) Internet-site for European strong-motion data. European Commission, Research-Directorate General, Environment and Climate Programme
    American Society of Civil Engineers (2010) ASCE/SEI 7-10: minimum design loads for buildings and other structures. Reston, Virginia
    Asteris PG, Cotsovos DM (2012) Numerical investigation of the effect of infill walls on the structural response of rc frames. Open Constr Build Technol J 6(SPEC. ISS. 1):164–181CrossRef
    Badillo-Almaraz H, Whittaker AS, Reinhorn AM (2007) Seismic fragility of suspended ceiling systems. Earthq Spectra 23(1):21–40. doi:10.​1193/​1.​2357626 CrossRef
    CEN (2004a) Eurocode 2: design of concrete structures—part 1-1: General rules and rules for buildings. EN 1992-1-1. Brussels, Belgium
    CEN (2004b) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. EN 1998-1. Brussels, Belgium
    Chaudhuri S, Villaverde R (2008) Effect of building nonlinearity on seismic response of nonstructural components: a parametric study. J Struct Eng 134(4):661–670. doi:10.​1061/​(ASCE)0733-9445(2008)134:​4(661) CrossRef
    Chen Y, Soong TT (1988) Seismic response of secondary systems. Eng Struct 10(4):218–228. doi:10.​1016/​0141-0296(88)90043-0 CrossRef
    Consiglio Superiore dei Lavori Pubblici (2009) Circolare 2 febbraio 2009, n. 617, Istruzioni per l’applicazione delle «Nuove norme tecniche per le costruzioni». G.U. n. 27 del 26-2-2009 (in Italian)
    Council of Standards New Zealand (2004) Structural design actions part 5: earthquake actions—New Zealand—NZS 1170.5:2004. Standards New Zealand, Wellington, New Zealand
    D’Ambrisi A, De Stefano M, Tanganelli M (2009) Use of pushover analysis for predicting seismic response of irregular buildings: a case study. J Earth Eng 13(8):1089–1100CrossRef
    Earthquake Engineering Research Institute (EERI) (1984) Nonstructural issues of seismic design and construction, publication 84-04. Berkeley, CA, USA
    Fathali S, Lizundia B (2011) Evaluation of current seismic design equations for nonstructural components in tall buildings using strong motion records. Struct Design Tall Spec Build 20:30–46. doi:10.​1002/​tal.​736 CrossRef
    Fischinger M, Ercolino M, Kramar M, Petrone C, Isakovic T (2011) Inelastic seismic shear in multi-storey cantilever columns. Paper presented at the 3rd international conference on computational methods in structural dynamics and earthquake engineering, COMPDYN 2011, 25–28 May 2011. Corfu, Greece
    Haselton CB (2006) Assessing seismic collapse safety of modern reinforced concrete moment frame buildings. Ph.D. thesis, Stanford University, CA, USA
    Ibarra LF, Medina RA, Krawinkler H (2005) Hysteretic models that incorporate strength and stiffness deterioration. Earthq Eng Struct Dyn 34(12):1489–1511. doi:10.​1002/​eqe.​495 CrossRef
    International Conference of Building Officials (ICBO) (2000) AC 156 acceptance criteria for the seismic qualification of nonstructural components. ICBO Evaluation Service Inc, Whittier
    Lin J, Mahin S (1985) Seismic response of light subsystems on inelastic structures. J Struct Eng 111(2):400–417. doi:10.​1061/​(ASCE)0733-9445(1985)111:​2(400) CrossRef
    Lucchini A, Mollaioli F, Bazzurro P (2014) Floor response spectra for bare and infilled reinforced concrete frames. J Earth Eng 18(7):1060–1082. doi:10.​1080/​13632469.​2014.​916633 CrossRef
    Maddaloni G, Magliulo G, Cosenza E (2012) Effect of the seismic input on non-linear response of R/C building structures. Adv Struct Eng 15(10):1861–1877CrossRef
    Magliulo G, Maddaloni G, Cosenza E (2007) Comparison between non-linear dynamic analysis performed according to EC8 and elastic and non-linear static analyses. Eng Struct 29(11):2893–2900. doi:10.​1016/​j.​engstruct.​2007.​01.​027 CrossRef
    Magliulo G, Pentangelo V, Maddaloni G, Capozzi V, Petrone C, Lopez P, Talamonti R, Manfredi G (2012a) Shake table tests for seismic assessment of suspended continuous ceilings. Bull Earthq Eng 10(6):1819–1832. doi:10.​1007/​s10518-012-9383-6 CrossRef
    Magliulo G, Petrone C, Capozzi V, Maddaloni G, Lopez P, Talamonti R, Manfredi G (2012b) Shake table tests on infill plasterboard partitions. Open Constr Build Technol J 6(Suppl 1-M10):155–163. doi:10.​2174/​1874836801206010​155 CrossRef
    Magliulo G, Ercolino M, Petrone C, Coppola O, Manfredi G (2014a) The emilia earthquake: the seismic performance of precast reinforced concrete buildings. Earthq Spectra 30(2):891–912. doi:10.​1193/​091012EQS285M CrossRef
    Magliulo G, Petrone C, Capozzi V, Maddaloni G, Lopez P, Manfredi G (2014b) Seismic performance evaluation of plasterboard partitions via shake table tests. Bull Earthq Eng 12(4):1657–1677. doi:10.​1007/​s10518-013-9567-8 CrossRef
    Mander J, Priestley M, Park R (1988) Theoretical stress–strain model for confined concrete. J Struct Eng 114(8):1804–1826. doi:10.​1061/​(ASCE)0733-9445(1988)114:​8(1804) CrossRef
    McKenna F, Fenves GL (2013) OpenSees manual. http://​opensees.​berkeley.​edu . Pacific Earthquake Engineering Research Center, Berkeley, CA
    Medina RA (2013) Seismic design horizontal accelerations for non-structural components. Paper presented at the Vienna congress on recent advances in earthquake engineering and structural dynamics 2013 (VEESD 2013), 28–30 August 2013, Vienna, Austria
    Medina RA, Sankaranarayanan R, Kingston KM (2006) Floor response spectra for light components mounted on regular moment-resisting frame structures. Eng Struct 28(14):1927–1940. doi:10.​1016/​j.​engstruct.​2006.​03.​022 CrossRef
    Menon A, Magenes G (2011) Definition of seismic input for out-of-plane response of masonry walls: II. Formulation. J Earth Eng 15(2):195–213. doi:10.​1080/​1363246090349444​6 CrossRef
    Petrone C, Magliulo G, Manfredi G (2014) Shake table tests for the seismic assessment of hollow brick internal partitions. Eng Struct 72:203–214. doi:10.​1016/​j.​engstruct.​2014.​04.​044 CrossRef
    Petrovčič S, Kilar V (2012) Effects of horizontal and vertical mass-asymmetric distributions on the seismic response of a high-rack steel structure. Adv Struct Eng 15(11):1977–1988. doi:10.​1260/​1369-4332.​15.​11.​1977 CrossRef
    Politopoulos I (2010) Floor spectra of MDOF nonlinear structures. J Earth Eng 14(5):726–742. doi:10.​1080/​1363246090342782​6 CrossRef
    Ray-Chaudhuri S, Hutchinson TC (2011) Effect of nonlinearity of frame buildings on peak horizontal floor acceleration. J Earth Eng 15(1):124–142. doi:10.​1080/​1363246100366804​6 CrossRef
    Rejec K, Isaković T, Fischinger M (2012) Seismic shear force magnification in RC cantilever structural walls, designed according to Eurocode 8. Bull Earthq Eng 10(2):567–586. doi:10.​1007/​s10518-011-9294-y CrossRef
    Rodriguez ME, Restrepo JI, Carr AJ (2002) Earthquake-induced floor horizontal accelerations in buildings. Earthq Eng Struct Dyn 31(3):693–718. doi:10.​1002/​eqe.​149 CrossRef
    Sankaranarayanan R, Medina RA (2007) Acceleration response modification factors for nonstructural components attached to inelastic moment-resisting frame structures. Earthq Eng Struct Dyn 36(14):2189–2210. doi:10.​1002/​eqe.​724 CrossRef
    Sewell RT, Cornell CA, Toro GR, McGuire RK (1988) A study of factors influencing floor response spectra in nonlinear multi-degree-of-freedom structures. Report no. 82. The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA
    Shome N, Cornell CA, Bazzurro P, Carballo JE (1998) Earthquakes, records, and nonlinear responses. Earthq Spectra 14(3):469–500. doi:10.​1193/​1.​1586011 CrossRef
    Singh M, Moreschi L, Suárez L, Matheu E (2006a) Seismic design forces. I: rigid nonstructural components. J Struct Eng 132(10):1524–1532. doi:10.​1061/​(ASCE)0733-9445(2006)132:​10(1524) CrossRef
    Singh M, Moreschi L, Suárez L, Matheu E (2006b) Seismic design forces. II: flexible nonstructural components. J Struct Eng 132(10):1533–1542. doi:10.​1061/​(ASCE)0733-9445(2006)132:​10(1533) CrossRef
    Taghavi S, Miranda E (2005) Approximate floor acceleration demands in multistory buildings. II: applications. J Struct Eng 131(2):212–220. doi:10.​1061/​(ASCE)0733-9445(2005)131:​2(212) CrossRef
    Velasquez JF, Restrepo J, Blandon CA (2012) Floor rersponse spectra for the design of acceleration sensitive light nonstructural systems in buildings. Paper presented at the 15th world conference on earthquake engineering, 24–28 September 2013, Lisboa, Portugal
    Villaverde R (1997) Seismic design of secondary structures: state of the art. J Struct Eng-Asce 123(8):1011–1019. doi:10.​1061/​(Asce)0733-9445(1997)123:​8(1011) CrossRef
    Wieser J, Pekcan G, Zaghi AE, Itani A, Maragakis M (2013) Floor accelerations in yielding special moment resisting frame structures. Earthq Spectra 29(3):987–1002. doi:10.​1193/​1.​4000167 CrossRef
  • 作者单位:C. Petrone (1)
    G. Magliulo (1)
    G. Manfredi (1)

    1. Department of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Civil Engineering
    Geophysics and Geodesy
    Hydrogeology
    Structural Geology
  • 出版者:Springer Netherlands
  • ISSN:1573-1456
文摘
Nonstructural components (NSCs) should be subjected to a careful and rational seismic design, in order to reduce the economic loss and to avoid threats to the life safety, as well as what concerns structural elements. The design of NSCs is based on the evaluation of the maximum inertia force, which is related to the floor spectral accelerations. The question arises as to whether Eurocode 8 is able to predict actual floor response spectral accelerations occurring in structures designed according to Eurocode 8. A parametric study is conducted on five RC frame structures in order to evaluate the floor response spectra. The structures, designed according to Eurocode 8, are subjected to a set of earthquakes, compatible with the design response spectrum. Time-history analyses are performed both on elastic and inelastic models of the considered structures. Eurocode formulation for the evaluation of the seismic demand on NSCs does not well fit the numerical results. Some comments on the target spectrum provided by AC 156 for the seismic qualification of NSC are also included. Keywords Floor spectra Floor acceleration Nonstructural components Building codes Seismic demand

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700