Eutrophication Prediction Using a Markov Chain Model: Application to Lakes in the Yangtze River Basin, China
详细信息    查看全文
  • 作者:Jiacong Huang ; Junfeng Gao ; Yinjun Zhang
  • 关键词:Eutrophication prediction ; Markov chain ; Eutrophication assessment ; Yangtze River Basin
  • 刊名:Environmental Modeling & Assessment
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:21
  • 期:2
  • 页码:233-246
  • 全文大小:1,829 KB
  • 参考文献:1.Ailliot, P., & Monbet, V. (2012). Markov-switching autoregressive models for wind time series. Environmental Modelling and Software, 30, 92–101.CrossRef
    2.Baasch, A., Tischew, S., & Bruelheide, H. (2010). Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis. Ecological Applications, 20, 1136–1147.CrossRef
    3.Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126, 139–154.CrossRef
    4.Burns, N., McIntosh, J., & Scholes, P. (2009). Managing the lakes of the Rotorua district, New Zealand. Lake and Reservoir Management, 25, 284–296.CrossRef
    5.Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22, 361–369.CrossRef
    6.Chuang, C., Lin, C., Chien, C., & Chou, W. (2011). Application of Markov chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling, 222, 835–845.CrossRef
    7.Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.CrossRef
    8.Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of chlorophyll a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environmental Monitoring and Assessment, 129, 295–308.CrossRef
    9.Forrest Hill, M., Witman, J. D., & Caswell, H. (2004). Markov chain analysis of succession in a rocky subtidal community. The American Naturalist, 164, 46–61.CrossRef
    10.Gao, J., Jiang, Z., Dou, H., et al. (2011). Conservation and development of China’s five largest freshwater lakes (1st ed.). Beijing: Science Press (In Chinese).
    11.Gemmer, M., Jiang, T., Su, B., & Kundzewicz, Z. W. (2008). Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China. Quaternary International, 186, 12–21.CrossRef
    12.Guan, D., Gao, W., Watari, K., & Fukahori, H. (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences, 18, 455–468.CrossRef
    13.Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222, 3761–3772.CrossRef
    14.Hilt, S., Köhler, J., Kozerski, H.-P., van Nes, E. H., & Scheffer, M. (2011). Abrupt regime shifts in space and time along rivers and connected lake systems. Oikos, 120, 766–775.CrossRef
    15.Huang, J., Gao, J., & Hörmann, G. (2012). Hydrodynamic-phytoplankton model for short-term forecasts of phytoplankton in Lake Taihu, China. Limnologica, 42(1), 7–18.CrossRef
    16.Huang, J., Gao, J., Hörmann, G., & Fohrer, N. (2014). Modeling the effects of environmental variables on short-term spatial changes in phytoplankton biomass in a large shallow lake, Lake Taihu. Environmental Earth Sciences, 72(9), 3609–3621.CrossRef
    17.Huang, J., Gao, J., Zhang, Y., & Xu, Y. (2015). Modeling impacts of water transfers on alleviation of phytoplankton aggregation in Lake Taihu. Journal of Hydroinformatics, 17(1), 149–162.CrossRef
    18.Jin, X., Liu, H., Tu, Q., Zhang, Z., & Zhu, X. (1990). Lake eutrophication in China (1st ed.). Beijing: China Environmental Science Press.
    19.Jin, X., Xu, Q., & Huang, C. (2005). Current status and future tendency of lake eutrophication in China. Science in China. Series C, Life Sciences, 48, 948–954.
    20.Johnson, J. C., Luczkovich, J. J., Borgatti, S. P., & Snijders, T. A. B. (2009). Using social network analysis tools in ecology: Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay. Ecological Modelling, 220, 3133–3140.CrossRef
    21.Jørgensen, S. E. (1976). A eutrophication model for a lake. Ecological Modelling, 2, 147–165.CrossRef
    22.Jørgensen, S. E. (2010). A review of recent developments in lake modelling. Ecological Modelling, 221, 689–692.CrossRef
    23.Khan, F., & Ansari, A. (2005). Eutrophication: an ecological vision. The Botanical Review, 71, 449–482.CrossRef
    24.Le, C., Zha, Y., Li, Y., Sun, D., Lu, H., & Yin, B. (2010). Eutrophication of lake waters in China: cost, causes, and control. Environmental Management, 45, 662–668.CrossRef
    25.Leguerrier, D., Bacher, C., Benoît, E., & Niquil, N. (2006). A probabilistic approach of flow-balanced network based on Markov chains. Ecological Modelling, 193, 295–314.CrossRef
    26.Li, Y., Tang, C., Wang, C., Anim, D. O., Yu, Z., & Acharya, K. (2013). Improved Yangtze River diversions: are they helping to solve algal bloom problems in Lake Taihu, China? Ecological Engineering, 51, 104–116.CrossRef
    27.Link, W. A., Cam, E., Nichols, J. D., & Cooch, E. G. (2002). Of BUGS and birds: Markov chain Monte Carlo for hierarchical modeling in wildlife research. Jornal of Wildlife Management, 66, 277–291.CrossRef
    28.Liou, Y., & Lo, S. (2005). A fuzzy index model for trophic status evaluation of reservoir waters. Water Research, 39, 1415–1423.CrossRef
    29.Liu, W., Zhang, Q., & Liu, G. (2010). Lake eutrophication associated with geographic location, lake morphology and climate in China. Hydrobiologia, 644, 289–299.CrossRef
    30.Logofet, D. O., & Lesnaya, E. V. (2000). The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling, 126, 285–298.CrossRef
    31.Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., Kong, F., Xue, B., Wu, J., & Li, S. (2011). China’s lakes at present: number, area and spatial distribution. Science China Earth Sciences, 54, 283–289.CrossRef
    32.Malmaeus, J. M., & Hakanson, L. (2004). Development of a lake eutrophication model. Ecological Modelling, 171, 35–63.CrossRef
    33.Mooij, W. M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P. V., Chitamwebwa, D. B. R., Degermendzhy, A. G., DeAngelis, D. L., De Senerpont Domis, L. N., Downing, A. S., Elliott, J. A., Fragoso, C. R., Jr., Gaedke, U., Genova, S. N., Gulati, R. D., Håkanson, L., Hamilton, D. P., Hipsey, M. R., ‘t Hoen, J., Hülsmann, S., Los, F. H., Makler-Pick, V., Petzoldt, T., Prokopkin, I. G., Rinke, K., Schep, S. A., Tominaga, K., Van Dam, A. A., Van Nes, E. H., Wells, S. A., & Janse, J. H. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology, 44, 633–667.CrossRef
    34.Müller, B., Lotter, A. F., Sturm, M., & Ammann, A. (1998). Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquatic Sciences, 60, 316–337.CrossRef
    35.OECD. (1982). Eutrophication of waters: monitoring, assessment and control. Paris: OECD.
    36.Schapaugh, A. W., & Tyre, A. J. (2013). Accounting for parametric uncertainty in Markov decision processes. Ecological Modelling, 254, 15–21.CrossRef
    37.Smith, V. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10, 126–139.CrossRef
    38.Strigul, N., Florescu, I., Welden, A. R., & Michalczewski, F. (2012). Modelling of forest stand dynamics using Markov chains. Environmental Modelling and Software, 31, 64–75.CrossRef
    39.Strobl, R. O., Forte, F., & Pennetta, L. (2007). Application of artificial neural networks for classifying lake eutrophication status. Lake and Reservoir Management, 12, 15–25.CrossRef
    40.Verkhozina, V. A., Kozhova, O. M., & Kusner, Y. S. (2000). Hydrodynamics as a limiting factor in the Lake Baikal ecosystem. Aquatic Ecosystem Health and Management, 3, 203–210.CrossRef
    41.Walker, W. W. (1979). Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Resources Research, 15, 1463–1470.CrossRef
    42.Wu, N., Schmalz, B., & Fohrer, N. (2011). Distribution of phytoplankton in a German lowland river in relation to environmental factors. Journal of Plankton Research, 33, 807–820.CrossRef
    43.WWF. (2013). http://​wwf.​panda.​org/​about_​our_​earth/​ecoregions/​ecoregion_​list/​ (accessed on September 30, 2013).
    44.Xu, F., Tao, S., Dawson, R. W., & Li, B. (2001). A GIS-based method of lake eutrophication assessment. Ecological Modelling, 144, 231–244.CrossRef
    45.Xu, F., Wang, J., Chen, B., Qin, N., Wu, W., He, W., He, Q., & Wang, Y. (2011). The variations of exergies and structural exergies along eutrophication gradients in Chinese and Italian lakes. Ecological Modelling, 222, 337–350.CrossRef
    46.Yang, X., Wu, X., Hao, H., & He, Z. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B, 9, 197–209.CrossRef
  • 作者单位:Jiacong Huang (1)
    Junfeng Gao (1)
    Yinjun Zhang (2)

    1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
    2. China National Environmental Monitoring Centre, 8 (B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Mathematical Modeling and IndustrialMathematics
    Applications of Mathematics
  • 出版者:Springer Netherlands
  • ISSN:1573-2967
文摘
Lake eutrophication is harmful and difficult to predict due to its complex evolution. As an alternative to existing mechanistic models, a Markov chain model was developed to predict the development of lake eutrophication based on an 11-year dataset in 41 lakes of the Yangtze River Basin. This model was validated using a real-time update strategy and was demonstrated to be reliable. Based on the dataset, the lake eutrophication dynamics from 2000 to 2010 were analyzed. Lakes with different trophic states from 2011 to 2050 and their responses to different water management practices were simulated based on the developed model. The simulation results show that lake eutrophication would worsen from 2011 to 2040; however, eutrophication could be significantly alleviated by changing 100 km2 of hypereutrophic lakes into eutrophic lakes per year from 2010 to 2020. The nutrient conditions in most of the lakes in the Yangtze River Basin show that phosphorus control would be more efficient than nitrogen control in eutrophication management practices. This case study demonstrates the utility of Markov chain models in using prior information to predict the long-term evolution of lake eutrophication at large spatial scales. The Markov chain technique can be easily adapted to predict evolutionary processes in other disciplines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700