Evaluation of CMIP5 climate models in simulating 1979-005 oceanic latent heat flux over the Pacific
详细信息    查看全文
  • 作者:Ning Cao ; Baohua Ren ; Jianqiu Zheng
  • 关键词:model evaluation ; climatology ; trend ; latent heat flux ; CMIP5
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:32
  • 期:12
  • 页码:1603-1616
  • 全文大小:1,849 KB
  • 参考文献:Alexander, M. A., and J. D. Scott, 1997: Surface flux variability over the North Pacific and North Atlantic Oceans. J. Climate, 10, 2963-978.CrossRef
    Berry, D. I., and E. C. Kent, 2009: A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645-56.CrossRef
    Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Inter. J Climatol., 31, 987-001.CrossRef
    Bigg, G. R., T. D. Jickells, P. S. Liss, and T. J. Osborn, 2003: The role of the oceans in climate. Int. J. Climatol., 23, 1127-159, doi: 10.1002/joc.926.CrossRef
    Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35(1), L01704, doi: 10.1029/2007GL031830.
    Cayan, D. R., 1992a: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.-Ocean, 30, 1-2.CrossRef
    Cayan, D. R., 1992b: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354-69.CrossRef
    Cayan, D. R., 1992c: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859-81.CrossRef
    Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838-41.CrossRef
    Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Climate, 16, 571-91.CrossRef
    Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 4539-556.CrossRef
    Gulev, S. K., 1995: Long-term variability of sea-air heat transfer in the North Atlantic Ocean. Inter. J. Climatol., 15, 825-52, doi: 10.1002/joc.3370150802.CrossRef
    Hayashi, Y., 1982: Confidence intervals of a climatic signal. J. Atmos. Sci., 39, 1895-905.CrossRef
    Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19(21), 5686-699.CrossRef
    Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197-08.CrossRef
    Li, G., B. H. Ren, C. Y. Yang, and J. Q. Zheng, 2011a: Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977-006. J. Geophys. Res., 116, D10115, doi: 10.1029/2010JD015444.CrossRef
    Li, G., B. H. Ren, J. Q. Zheng, and C. Y. Yang, 2011b: Net air-sea surface heat flux during 1984-004 over the North Pacific and North Atlantic oceans (10°N-0°N): Annual mean climatology and trend. Theor. Appl. Climatol., 104, 387-01.CrossRef
    Li, G., and S. P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39(22), L22703, doi: 10.1029/2012GL053777.
    Liu, J. P., and J. A. Curry, 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989-000. Geophys. Res. Lett., 33, L05706, doi: 10.1029/2005GL024809.
    Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterizations of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722-735.CrossRef
    Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrology and Earth System Sciences, 12, 551-63.
    Maurer, E. P., L. D. Brekke, and T. Pruitt, 2010: Contrasting lumped and distributed hydrology models for estimating climate change impacts on California watersheds. Journal of the American Water Resources Association, 46(5), 1024-035.CrossRef
    Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 1997: Intercomparison makes for a better climate model. Eos, Trans. Amer. Geophys. Union, 78(41), 445-51.CrossRef
    Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and R. J. Stouffer, 2000: The coupled model intercomparison project (CMIP). Bull. Amer. Meteor. Soc., 81(2), 313-18.CrossRef
    Mitas, C. M., and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett., 33(1), L01810, doi: 10.1029/2005GL024406.
    O’Brien, E. W., and F. Horsfall, 1995: Sensitivity of the heat budget in a midlatitude ocean model to variations in atmospheric forcing. J. Geophys. Res., 100, 24761-4772.CrossRef
    Papadopoulos, V. P., Y. Abualnaja, S. A. Josey, A. Bower, D. E. Raitsos, H. Kontoyiannis, and I. Hoteit, 2013: Atmospheric forcing of the winter air-sea heat fluxes over the Northern Red Sea. J. Climate, 26, 1685-701.CrossRef
    Quan, X. W., H. F. Diaz, and M. P. Hoerling, 2004:
  • 作者单位:Ning Cao (1)
    Baohua Ren (1)
    Jianqiu Zheng (1) (2)

    1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
    2. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
文摘
The climatological mean state, seasonal variation and long-term upward trend of 1979-005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux (Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well, but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region, and the meridional variability of LHF, are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity. Comparing the observed long-term upward trend, the trends of LHF and wind speed are largely underestimated, while trends of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the trend of LHF. Keywords model evaluation climatology trend latent heat flux CMIP5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700