Comparison between gene expression programming and traditional models for estimating evapotranspiration under hyper arid Conditions
详细信息    查看全文
  • 作者:Mohamed A. Yassin ; Abdulrahman A. Alazba ; Mohamed A. Mattar
  • 关键词:arid conditions ; reference evapotranspiration ; gene expression programming ; traditional models
  • 刊名:Water Resources
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:43
  • 期:2
  • 页码:412-427
  • 全文大小:972 KB
  • 参考文献:1.Alazba, A.A., Estimating palm water requirements using Penman–Monteith mathematical model, J. King Saud Univ., 2004, Vol. 16, No. 2, pp. 137–152.
    2.Alazba, A.A., Comparison of the ASCE standardized and other Penman Monteith type equations under hyper-arid area, ASABE Annual Meeting, Michigan: Am. Soc. of Ag. Biol. Eng., St. Joseph, 2004.
    3.Alazba, A., Mattar, M.A., El-Nesr, M.N., and Amin, M.T., Field assessment of friction head loss and friction correction factor equations, J. Irrig. Drain. Eng., ASCE, 2012, Vol. 138, No. 2, pp.166–176.
    4.Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop evapotranspiration guidelines for computing crop water requirements, FAO Irrigation and Drainage, Rome, 1998, No. 56.
    5.Aytek, A. and Kii, O., Genetic programming approach to suspended sediment modelling, J. Hydrol., 2008, Vol. 351, No. 3–4, pp. 288–298.CrossRef
    6.Azamathulla, H.Md., Gene-expression programming to predict friction factor for Southern Italian Rivers, Neural Comput. Appl., 2012, doi: 10.1007/s00521–0121091–2.
    7.Azamathulla, H.Md. and Ahmad, Z., Gene-expression programming for transverse mixing coefficient, J. Hydrol., 2012, Vol. 434–435, pp. 142–148.CrossRef
    8.Azamathulla, H.Md., Ghani, A.A., Leow, C.S., Chang, K.C., and Zakaria, N.A, Gene-expression programming for the development of a stage-discharge curve of the Pahang River, Wat. Res. Manag., 2011, Vol. 25, pp. 2901–2916.CrossRef
    9.Dai, X., Shi, H., Li, Y., Ouyang, Z., and Huo, Z., Artificial neural network models for estimating regional reference evapotranspiration based on climate factors, Hydrol. Process., 2009, Vol. 23, pp. 442–450.CrossRef
    10.Fernando, A.K., Shamseldin, A.Y., and Abrahart, R.J., Use of gene expression programming for multimodel combination of Rainfall-Runoff models, J. Hydrol. Eng., 2012, Vol. 17, No. 9, pp. 975–985.CrossRef
    11.Ferreira, C., Gene Expression Programming in Problem Solving, 6th Online World Conference on Soft Computing in Industrial Applications, 2001.
    12.Ferreira, C., Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst., 2001, Vol. 13, No. 2, pp. 87–129.
    13.Ferreira, C., Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Germany: Springer-Verlag, 2006.
    14.Gandomi, A.H., Babanajad, S.K., Alavi, A.H., and Farnam, Y., Novel approach to strength modeling of concrete under triaxial compression, J. Mater. Civ. Eng., 2012, Vol. 24, No. 9, pp. 1132–1143.CrossRef
    15.Gavilan, P., Berengena, J., and Allen, R.G., Measuring versus estimating net radiation and soil heat flux: impact on Penman–Monteith reference ET estimates in semiarid regions, Agr. Wat. Manag., 2007, Vol. 89, pp. 275–286.CrossRef
    16.Gavilan, P., Lorite, I.J., Tornero, S., and Berengena, J., Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment, Agr. Wat. Manag., 2006, Vol. 81, pp. 257–281.CrossRef
    17.Ghani, A.A. and Azamathulla, H.Md., Gene-expression programming for sediment transport in Sewer Pipe Systems, J. Pipeline Syst. Eng. Pract., 2011, Vol. 2, No. 3, pp. 102–106.CrossRef
    18.Guven, A. and Aytek, A., A new approach for stage-discharge relationship: gene-expression programming, J. Hydrol. Eng., 2009, Vol. 14, No. 8, pp. 812–820.CrossRef
    19.Hupet, F. and Vanclooster, M., Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration, J. Hydrol., Vol. 243, pp. 192–204.
    20.Irmak, S., Irmak, A., Allen, R.G., and Jones, J.W., Solar and net radiation based equations to estimate reference evapotranspiration in humid climates, J. Irrig. Drain. Eng., ASCE, 2003, Vol. 129, No. 5, pp. 336–347.CrossRef
    21.Jain, S.K., Nayak, P.C., and Sudhir, K.P., Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation, Hydrol. Process., 2008, Vol. 22, No. 13, pp. 2225–2234CrossRef
    22.Kisi, O. and Ozturk, O., Adaptive neuro-fuzzy computing technique for evapotranspiration estimation, J. Irrig. Drain. Eng., ASCE, 2007, Vol. 133, No. 4, pp. 368–379.CrossRef
    23.Kisi, O. and Guven, A., Evapotranspiration modeling using linear genetic programming technique, J. Irrig. Drain Eng., 2010, Vol. 136, No. 10, pp. 715–723.CrossRef
    24.Kumar, R., Jat, M.K., and Shankar, V., Methods to estimate irrigated reference crop evapotranspiration— a review, Water Science Technology, IWA Publishing, 2012, Vol. 66, No. 3, pp. 525–535.CrossRef
    25.Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., and Pruitt, W.O., Estimating evapotranspiration using artificial neural network, J. Irrig. Drain. Eng., ASCE, 2002, Vol. 128, No. 4, pp. 224–233.CrossRef
    26.Landeras, G., Barredo, A.O., and Lopez, J.J., Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain), Agr. Wat. Manag., 2008, Vol. 95, pp. 553–565.CrossRef
    27.Legates, D.R. and McCabe, J., Evaluating the use of “goodness-of fit” measures in hydrologic and hydroclimatic model validation, Wat. Resour. Res., 1999, Vol. 35, No. 1, pp. 233–241.CrossRef
    28.Mollahasani, A., Alavi, A.H., and Gandomi, A.H., Empirical modeling of plate load test moduli of soil via gene expression programming, Comput. Geotechnics, 2011, Vol. 38, pp. 281–286.CrossRef
    29.Naoum, S. and Tsanis, K.I., Hydroinformatics in evapotranspiration estimation, Environ. Modelling Software, 2003, Vol. 18, pp. 261–271.CrossRef
    30.Nazari, A., Prediction performance of PEM fuel cells by gene expression programming, Int. J. Hydrogen Energy, 2010, Vol. 37, pp. 18972–18980.CrossRef
    31.Parasuraman, K., Elshorbagy, A., and Carey, S., Modeling the dynamics of the evapotranspiration process using genetic programming, Hydrolog. Sci. J., 2007, Vol. 52, No. 3, pp. 563–578.CrossRef
    32.Rivas, R. and Caselles, V., A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data, Remote Sensing Environ., 2004, Vol. 93, pp. 68–76.CrossRef
    33.Samadianfard, S., Gene expression programming analysis of implicit Colebrook–White equation in turbulent flow friction factor calculation, J. Petroleum Sci. Eng., 2012, Vol. 92–93, pp. 48–55.CrossRef
    34.Saridemir, M., Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash, Construction Building Mater., 2010, Vol. 24, pp. 1911–1919.CrossRef
    35.Seckin, G., Yilmaz, T., Guven, A., Yuceer, A., Basibuyuk, M., and Ersu, C.B., Modeling the performance of up flow anaerobic filters treating paper-mill wastewater using gene-expression programming, Ecol. Eng., 2011, Vol. 37, pp. 523–528.CrossRef
    36.Shiri, J., Kisi, O., Landeras, G., Lopez, J.J., Nazemi, A.H., and Stuyt, L., Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain), J. Hydrology, 2012, Vol. 414–415, pp. 302–316.CrossRef
    37.Steve, R.G., Kirkham, M.B., and Brent, E.C., Root uptake and transpiration: from measurements and models to sustainable irrigation, J. Agr. Wat. Manag., 2006, Vol. 86, pp. 165–176.CrossRef
    38.Trajkovic, S., Testing hourly reference evapotranspiration approaches using lysimeter measurements in a semiarid climate, Hydrology Res., 2010, Vol. 41, No. 1, pp. 38–49.CrossRef
    39.Trajkovic, S. and Kolakovic, S., Comparison of simplified pan-based equations for estimating reference evapotranspiration, J. Irrig. Drain. Eng., 2010, Vol. 136, No. 2, pp. 137–140.CrossRef
    40.Traore, S. and Guven, A., Regional-specific numerical models of evapotranspiration using gene-expression programming interface in Sahel, Wat. Res. Manag., 2012, Vol. 26, pp. 4367–4380.CrossRef
    41.Traore, S., Wang, Y., and Kerh, T., Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian Zone, Agr. Wat. Manag., 2010, Vol. 97, pp. 707–714.CrossRef
    42.Zahiri, A. and Eghbali, P., Gene expression programming for prediction of flow discharge in compound channels, J. Civil Eng. Urbanism, 2012, Vol. 2, No. 4, pp. 164–169.
    43.Zanetti, S.S., Sousa, E.F., Oliveira, V.P.S., Almeida, F.T., and Bernardo, S., Estimating evapotranspiration using artificial neural network and minimum climatological data, J. Irrig. Drain. Eng., ASCE, 2007, Vol. 133, No. 2, pp. 83–89.CrossRef
  • 作者单位:Mohamed A. Yassin (1)
    Abdulrahman A. Alazba (1) (2)
    Mohamed A. Mattar (2) (3)

    1. Alamoudi Water Chair, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
    2. Agricultural Engineering Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
    3. Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center, P.O. Box 256, Giza, Egypt
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-344X
文摘
Gene Expression Programming (GEP) was used to develop new mathematical equations for estimating daily reference evapotranspiration (ET ref) for the Kingdom of Saudi Arabia. The daily climatic variables were collected by 13 meteorological stations from 1980 to 2010. The GEP models were trained on 65% of the climatic data and tested using the remaining 35%. The generalised Penman-Monteith model was used as a reference target for evapotranspiration (ET) values, with h c varies from 5 to 105 cm with increment of a centimetre. Eight GEP models have been compared with four locally calibrated traditional models (Hargreaves-Samani, Irmak, Jensen-Haise and Kimberly-Penman). The results showed that the statistical performance criteria values such as determination coefficients (R 2) ranged from as low as 64.4% for GEP-MOD1, where the only parameters included (maximum, minimum, and mean temperature and crop height), to as high as 95.5% for GEP-MOD8 with which all climatic parameters included (maximum, minimum and mean temperature; maximum, minimum and mean humidity; solar radiation; wind speed; and crop height). Moreover, an interesting founded result is that the solar radiation has almost no effect on ET ref under the hyper arid conditions. In contrast, the wind speed and plant height have a great positive impact in increasing the accuracy of calculating ET ref. Furthermore, eight GEP models have obtained better results than the locally calibrated traditional ET ref equations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700