Multi-valued nonlinear perturbations of time fractional evolution equations in Banach spaces
详细信息    查看全文
  • 作者:Rong-Nian Wang ; Peng-Xian Zhu ; Qing-Hua Ma
  • 关键词:Fractional evolution inclusions ; Topological structure of solution set ; Invariance of reachability set
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:80
  • 期:4
  • 页码:1745-1759
  • 全文大小:530 KB
  • 参考文献:1.Andres, J., Gabor, G., G贸rniewicz, L.: Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwend. 19(1), 35鈥?0 (2000)View Article MATH
    2.Andres, J., Gabor, G., G贸rniewicz, L.: Acyclicity of solution sets to functional inclusions. Nonlinear Anal. 49, 671鈥?88 (2002)View Article MATH MathSciNet
    3.Andres, J., Pavla膷kov谩, M.: Topological structure of solution sets to asymptotic boundary value problems. J. Differ. Equ. 248, 127鈥?50 (2010)View Article MATH
    4.Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with randomdata. J. Stat. Phys. 104, 1349鈥?387 (2001)View Article MATH MathSciNet
    5.Aronszajn, N.: Le correspondant topologique de l鈥檜nicit茅 dans la th茅orie des 茅quations diff茅rentielles. Ann. Math. 43, 730鈥?38 (1942)View Article MATH MathSciNet
    6.Bakowska, A., Gabor, G.: Topological structure of solution sets to differential problems in Fr茅chet spaces. Ann. Polon. Math. 95(1), 17鈥?6 (2009)View Article MathSciNet
    7.Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. 32(1), 115鈥?30 (2008)MATH MathSciNet
    8.Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Birkha\(\ddot{u}\) ser, Boston (2007)
    9.Bothe, D.: Multi-valued perturbations of \(m\) -accretive differential inclusions. Isr. J. Math. 108, 109鈥?38 (1998)View Article MATH MathSciNet
    10.Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J. Funct. Anal. 265, 2039鈥?073 (2013)View Article MATH MathSciNet
    11.Conti, G., Obukhovskii, V., Zecca, P.: On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. In: Topology in Nonlinear Analysis, Banach Center Publications 35, pp. 159鈥?69. Institute of Mathematics of the Polish Academy of Sciences, Warszawa (1996)
    12.Deimling, K.: Multi-valued Differential Equtions. de Gruyter, Berlin (1992)View Article
    13.Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: F. Keil, W. Mackens, H. Voss, J. Werther (eds.) Scientific Computing in Chemical Engineering II Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217鈥?24. Springer, Heidelberg, 1999
    14.Dugundji, J.: An extension of Tietze鈥檚 theorem. Pac. J. Math. 1, 353鈥?67 (1951)View Article MATH MathSciNet
    15.Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199(2), 211鈥?55 (2004)View Article MATH MathSciNet
    16.El-Sayed, A., Ibrahim, A.: Multivalued fractional differential equations. Appl. Math. Comput. 68(1), 15鈥?5 (1995)View Article MATH MathSciNet
    17.Gabor, G.: Acyclicity of solution sets of inclusions in metric spaces. Topol. Methods Nonlinear Anal. 14, 327鈥?43 (1999)
    18.Gabor, G.: Some results on existence and structure of solution sets to differential inclusions on the halfline. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5, 431鈥?46 (2002)MATH MathSciNet
    19.Gabor, G., Grudzka, A.: Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609鈥?27 (2012)View Article MATH MathSciNet
    20.Henderson, J., Ouahab, A.: Impulsive differential inclusions with fractional order. Computers Math. Appl. 59(3), 1191鈥?226 (2010)View Article MATH MathSciNet
    21.Hilfer, H.: Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapure (2000)View Article MATH
    22.Hu, S.C., Papageorgiou, N.S.: On the topological regularity of the solution set of differential inclusions with constraints. J. Differ. Equ. 107(2), 280鈥?89 (1994)View Article MATH MathSciNet
    23.Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applicaitons, vol. 7. Walter de Gruyter, Berlin (2001)
    24.Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
    25.Medve\(\check{\rm d}\) , M.: On the global existence of mild solutions of nonlinear delay systems associated with continuous and analytic semigroups. Electron. J. Qual. Theory Differ. Equ. Proc. 8th Coll. QTDE 13, 1鈥?0 (2008)
    26.Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180鈥?186 (1995)View Article
    27.Ouahab, A.: Fractional semilinear differential inclusions. Comput. Math. Appl. 64, 3235鈥?252 (2012)View Article MATH MathSciNet
    28.Paicu, A.: Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337, 1238鈥?248 (2008)View Article MATH MathSciNet
    29.Paicu, A., Vrabie, I.I.: A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonlinear Anal. 72, 4091鈥?100 (2010)View Article MATH MathSciNet
    30.Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)
    31.Seidman, T.I.: Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25, 1173鈥?191 (1987)View Article MATH MathSciNet
    32.Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, 2nd edn. Longman and Wiley, Harlow (1995)
    33.Vrabie, I.I.: Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Funct. Anal. 262, 1363鈥?391 (2012)View Article MATH MathSciNet
    34.Vrabie, I.I.: Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions. Nonlinear Anal. 74, 7047鈥?060 (2011)View Article MATH MathSciNet
    35.Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12, 3642鈥?653 (2011)View Article MATH MathSciNet
    36.Wang, R.N., Yang, Y.H.: On the Cauchy problems of fractional evolution equations with nonlocal initial conditions. Results Math. 63, 15鈥?0 (2013)View Article MATH MathSciNet
    37.Wang, J.R., Zhou, Y., Fe\(\breve{c}\) kan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 71, 685鈥?00 (2013)
    38.Wang, R.N., Zhu, P.X.: Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions. Nonlinear Anal. 85, 180鈥?91 (2013)View Article MATH MathSciNet
    39.Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202鈥?35 (2012)View Article MATH MathSciNet
    40.Wang, R.N., Xiao, T.J., Liang, J.: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24, 1435鈥?442 (2011)View Article MATH MathSciNet
    41.Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Heidelberg (2010)View Article MATH
    42.Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063鈥?077 (2010)View Article MATH MathSciNet
    43.Zhou, Y., Jiao, F., Pecaric, J.: On the Cauchy problem for fractional functional differential equations in Banach spaces. Topol. Methods Nonlinear Anal. (2014) (in press)
    44.Zhou, Y., Tarasov, V. E., Trujillo, J.J., et al.: Dynamics of fractional partial differential equations. Eur. Phys. J. Spec. Top. (2014) (in press)
    45.Zhu, Q.J.: On the solution set of differential inclusions in Banach space. J. Differ. Equ. 93, 213鈥?37 (1991)View Article MATH
  • 作者单位:Rong-Nian Wang (1)
    Peng-Xian Zhu (2)
    Qing-Hua Ma (1)

    1. Department of Applied Mathematics, Guangdong University of Foreign Studies, Guangzhou, 510420, People鈥檚 Republic of China
    2. Department of Mathematics, Nanchang University, Nanchang, 330031, Jiangxi, People鈥檚 Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
The paper is concerned with the fractional evolution inclusion \(^\mathrm{c}D_t^q u(t)\in Au(t)+F(t,u(t))\) in Banach spaces, where \(^\mathrm{c}D_t^q\), \(0<q<1\), is the regularized Caputo fractional derivative of order q, A generates a compact semigroup, and \(F\) is a multi-valued function with convex, closed values. Constructing a suitable directionally \(L^p\)-integrable selection from \(F\), we study the compactness and \(R_\delta \)-structure of the set of trajectories on a closed domain. Moreover, we discuss the \(R_\delta \)-structure of the set of trajectories to the control problem corresponding to the inclusion above. Finally, we apply our abstract theory to boundary value problems of fractional diffusion inclusions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700