Drift beyond Wright–Fisher
详细信息    查看全文
  • 作者:Hayley Clatterbuck
  • 关键词:Genetic drift ; Wright–Fisher ; Semantic view of theories ; Population genetics ; Evolution
  • 刊名:Synthese
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:192
  • 期:11
  • 页码:3487-3507
  • 全文大小:509 KB
  • 参考文献:Abrams, M. (2007). How do natural selection and random drift interact? Philosophy of Science, 74(5), 666-79.CrossRef
    Brandon, R. N. (2005). The difference between selection and drift: A reply to Millstein. Biology and Philosophy, 20(1), 153-70.CrossRef
    Cannings, C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Advances in Applied Probability, 6, 260-90.CrossRef
    Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-05.CrossRef
    Clatterbuck, H., Sober, E., & Lewontin, R. (2013). Selection never dominates drift (nor vice versa). Biology & Philosophy, 29, 1-6.
    Coyne, J. A., Barton, N. H., & Turelli, M. (1997). Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution, 51, 643-71.CrossRef
    Der, R., Epstein, C. L., & Plotkin, J. B. (2011). Generalized population models and the nature of genetic drift. Theoretical Population Biology, 80(2), 80-9.CrossRef
    Der, R., Epstein, C., & Plotkin, J. B. (2012). Dynamics of neutral and selected alleles when the offspring distribution is skewed. Genetics, 191(4), 1331-344.CrossRef
    Eldon, B., & Wakeley, J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics, 172(4), 2621-633.CrossRef
    Filler, J. (2009). Newtonian forces and evolutionary biology: A problem and solution for extending the force interpretation. Philosophy of Science, 76(5), 774-83.CrossRef
    Gildenhuys, P. (2009). An explication of the causal dimension of drift. The British Journal for the Philosophy of Science, 60(3), 521-55.CrossRef
    Hedgecock, D. (1994). Does variance in reproductive success limit effective population size of marine organisms? In A. R. Beaumont (Ed.), Genetics and evolution of aquatic organisms (pp. 122-34). London: Chapman and Hall.
    Hodge, M. J. S. (1987). Natural selection as a causal, empirical, and probabilistic theory. In L. Kruger, G. Gigerenzer, & M. Morgan (Eds.), The probabilistic revolution (Vol. 2, pp. 233-70). Cambridge, MA: MIT Press.
    Karlin, S., & McGregor, J. (1964). Direct product branching processes and related Markov chains. Proceedings of the National Academy of Sciences of the United States of America, 51(4), 598.CrossRef
    Kimura, M. (1962). On the probability of fixation of mutant genes in a population. Genetics, 47, 713-19.
    Lange, M. (2013a). Really statistical explanations and genetic drift. Philosophy of Science, 80, 169-88.CrossRef
    Lange, M. (2013b). What makes a scientific explanation distinctively mathematical? British Journal for the Philosophy of Science, 64, 485-11.CrossRef
    Lange, M., & Rosenberg, A. (2011). Can there be a priori causal models of natural selection? Australasian Journal of Philosophy, 89, 591-99.CrossRef
    Matthen, M., & Ariew, A. (2002). Two ways of thinking about fitness and natural selection. Journal of Philosophy, 99(2), 55-3.CrossRef
    Matthen, M., & Ariew, A. (2009). Selection and causation. Philosophy of science, 76(2), 201-24.CrossRef
    Mills, S., & Beatty, J. (1979). The propensity interpretation of fitness. Philosophy of Science, 46, 263-86.CrossRef
    Millstein, R. L. (2002). Are random drift and natural selection conceptually distinct? Biology and Philosophy, 17(1), 33-3.CrossRef
    Millstein, R. L., Skipper, R. A, Jr, & Dietrich, M. R. (2009). (Mis)interpreting mathematical models: Drift as a physical process. Philosophy & Theory in Biology, 1, 1-3.CrossRef
    Okasha, S. (2006). Evolution and the levels of selection (Vol. 16). Oxford: Clarendon Press.CrossRef
    Plutynski, A. (2007). Drift: A historical and conceptual overview. Biological Theory, 2(2), 156-67.CrossRef
    Reisman, K., & Forber, P. (2005). Manipulation and the causes of evolution. Philosophy of Science, 72(5), 1113-123.CrossRef
    Shapiro, L., & Sober, E. (2007). Epiphenomenalism: The dos and the don’ts. In G. Wolters & P. Machamer (Eds.), Thinking about causes: From Greek philosophy to modern physics (pp. 235-64). Pittsburgh: University of Pittsburgh Press.
    Sober, E. (1984). The nature of selection. Cambridge, MA: MIT Press.
    Sober, E. (2011). A priori causal models of natural selection. Australasian Journal of Philosophy, 89(4), 571-89.CrossRef
    Stephens, C. (2004). Selection, drift, and the “forces-of evolution. Philosophy of Science, 71(4), 550-70.CrossRef
    Walsh, D. M. (2000). Chasing shadows: Natural selection and adaptation. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 31(1), 135-53.CrossRef
    Walsh, D. M., Lewens, T., & Ariew, A. (2002). The trials of life: Natural selection and random drift. Philosophy of Science, 69(3), 429-46.CrossRef
    Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford Univers
  • 作者单位:Hayley Clatterbuck (1)

    1. University of Wisconsin-Madison, 5185 Helen C White Hall, 600 N Park St., Madison, WI, 53706, USA
  • 刊物类别:Humanities, Social Sciences and Law
  • 刊物主题:Philosophy
    Philosophy
    Logic
    Epistemology
    Metaphysics
    Philosophy of Language
  • 出版者:Springer Netherlands
  • ISSN:1573-0964
文摘
Several recent arguments by philosophers of biology have challenged the traditional view that evolutionary factors, such as drift and selection, are genuine causes of evolutionary outcomes. In the case of drift, advocates of the statistical theory argue that drift is merely the sampling error inherent in the other stochastic processes of evolution and thus denotes a mathematical, rather than causal, feature of populations. This debate has largely centered around one particular model of drift, the Wright–Fisher model, and this has contributed to the plausibility of the statisticalists-arguments. However, an examination of alternative, predictively inequivalent models shows that drift is a genuine cause that can be manipulated to change population outcomes. This case study illustrates the influence of methodological assumptions on ontological judgments, particularly the pernicious effect of focusing on a particular model at the expense of others and confusing its assumptions and idealizations for true claims about the phenomena being modeled. Keywords Genetic drift Wright–Fisher Semantic view of theories Population genetics Evolution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700