The contribution of Alu exons to the human proteome
详细信息    查看全文
  • 作者:Lan Lin ; Peng Jiang ; Juw Won Park ; Jinkai Wang ; Zhi-xiang Lu…
  • 关键词:Alu ; Transposable element ; Exon ; Alternative splicing ; RNA editing ; RNA ; seq ; Ribo ; seq ; Transcriptome ; Proteome ; Evolution ; Primate
  • 刊名:Genome Biology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,190 KB
  • 参考文献:1.Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9:397–405.PubMed PubMedCentral CrossRef
    2.Hasler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006;34:5491–7.PubMed PubMedCentral CrossRef
    3.Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703.PubMed PubMedCentral CrossRef
    4.Sorek R. The birth of new exons: mechanisms and evolutionary consequences. RNA. 2007;13:1603–8.PubMed PubMedCentral CrossRef
    5.Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science. 2003;300:1288–91.PubMed CrossRef
    6.Zhang XH, Chasin LA. Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. Proc Natl Acad Sci U S A. 2006;103:13427–32.PubMed PubMedCentral CrossRef
    7.Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol. 2007;8:R127.PubMed PubMedCentral CrossRef
    8.Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, et al. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 2008;4:e1000225.PubMed PubMedCentral CrossRef
    9.Shen S, Lin L, Cai JJ, Jiang P, Kenkel EJ, Stroik MR, et al. Widespread establishment and regulatory impact of Alu exons in human genes. Proc Natl Acad Sci U S A. 2011;108:2837–42.PubMed PubMedCentral CrossRef
    10.Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 2013;152:453–66.PubMed PubMedCentral CrossRef
    11.Makalowski W, Mitchell GA, Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994;10:188–93.PubMed CrossRef
    12.Nekrutenko A, Li WH. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001;17:619–21.PubMed CrossRef
    13.Gotea V, Makalowski W. Do transposable elements really contribute to proteomes? Trends Genet. 2006;22:260–7.PubMed CrossRef
    14.Piriyapongsa J, Rutledge MT, Patel S, Borodovsky M, Jordan IK. Evaluating the protein coding potential of exonized transposable element sequences. Biol Direct. 2007;2:31.PubMed PubMedCentral CrossRef
    15.Goodier JL, Kazazian Jr HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135:23–35.PubMed CrossRef
    16.Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12:1060–7.PubMed PubMedCentral CrossRef
    17.Feschotte C, Pritham EJ. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 2007;41:331–68.PubMed PubMedCentral CrossRef
    18.Birzele F, Csaba G, Zimmer R. Alternative splicing and protein structure evolution. Nucleic Acids Res. 2008;36:550–8.PubMed PubMedCentral CrossRef
    19.Gerber A, O’Connell MA, Keller W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA. 1997;3:453–63.PubMed PubMedCentral
    20.Hsu DW, Lin MJ, Lee TL, Wen SC, Chen X, Shen CK. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues. Proc Natl Acad Sci U S A. 1999;96:9751–6.PubMed PubMedCentral CrossRef
    21.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.PubMed PubMedCentral CrossRef
    22.Hillman RT, Green RE, Brenner SE. An unappreciated role for RNA surveillance. Genome Biol. 2004;5:R8.PubMed PubMedCentral CrossRef
    23.Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009–15.PubMed PubMedCentral CrossRef
    24.Shen S, Park JW, Huang J, Dittmar KA, Lu ZX, Zhou Q, et al. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res. 2012;40:e61.PubMed PubMedCentral CrossRef
    25.Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–9.PubMed PubMedCentral CrossRef
    26.Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, et al. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project. J Proteome Res. 2014;13:60–75.PubMed PubMedCentral CrossRef
    27.Fonslow BR, Stein BD, Webb KJ, Xu T, Choi J, Park SK, et al. Digestion and depletion of abundant proteins improves proteomic coverage. Nat Methods. 2013;10:54–6.PubMed PubMedCentral CrossRef
    28.Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324:218–23.PubMed PubMedCentral CrossRef
    29.Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.PubMed PubMedCentral CrossRef
    30.Price AL, Eskin E, Pevzner PA. Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. Genome Res. 2004;14:2245–52.PubMed PubMedCentral CrossRef
    31.Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 2007;21:1833–56.PubMed CrossRef
    32.Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, et al. Integration of cardiac proteome biology and medicine by a specialized knowledgebase. Circ Res. 2013;113:1043–53.PubMed PubMedCentral CrossRef
    33.Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E, Ast G. RNA-editing-mediated exon evolution. Genome Biol. 2007;8:R29.PubMed PubMedCentral CrossRef
    34.Steensgaard P, Garre M, Muradore I, Transidico P, Nigg EA, Kitagawa K, et al. Sgt1 is required for human kinetochore assembly. EMBO Rep. 2004;5:626–31.PubMed PubMedCentral CrossRef
    35.Niikura Y, Kitagawa K. Identification of a novel splice variant: human SGT1B (SUGT1B). DNA Seq. 2003;14:436–41.PubMed CrossRef
    36.Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol. 2007;8:497–503.PubMed CrossRef
    37.Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–94.PubMed CrossRef
    38.Kirsch RD, Joly E. An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res. 1998;26:1848–50.PubMed PubMedCentral CrossRef
    39.Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP, Bass BL. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. 2005;309:1534–9.PubMed PubMedCentral CrossRef
    40.O’Connell MA, Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci U S A. 1994;91:10596–600.PubMed PubMedCentral CrossRef
    41.Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014;42:D109–13.PubMed PubMedCentral CrossRef
    42.Boue S, Letunic I, Bork P. Alternative splicing and evolution. Bioessays. 2003;25:1031–4.PubMed CrossRef
    43.Xing Y, Lee C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat Rev Genet. 2006;7:499–509.PubMed CrossRef
    44.Gal-Mark N, Schwartz S, Ast G. Alternative splicing of Alu exons--two arms are better than one. Nucleic Acids Res. 2008;36:2012–23.PubMed PubMedCentral CrossRef
    45.Schwartz S, Gal-Mark N, Kfir N, Oren R, Kim E, Ast G. Alu exonization events reveal features required for precise recognition of exons by the splicing machinery. PLoS Comput Biol. 2009;5:e1000300.PubMed PubMedCentral CrossRef
    46.Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, et al. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell. 2004;14:221–31.PubMed CrossRef
    47.Corvelo A, Eyras E. Exon creation and establishment in human genes. Genome Biol. 2008;9:R141.PubMed PubMedCentral CrossRef
    48.Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11:1114–25.PubMed PubMedCentral CrossRef
    49.Zabka M, Lesniak W, Prus W, Kuznicki J, Filipek A. Sgt1 has co-chaperone properties and is up-regulated by heat shock. Biochem Biophys Res Commun. 2008;370:179–83.PubMed CrossRef
    50.Prus W, Zabka M, Bieganowski P, Filipek A. Nuclear translocation of Sgt1 depends on its phosphorylation state. Int J Biochem Cell Biol. 2011;43:1747–53.PubMed CrossRef
    51.Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28:1248–50.PubMed CrossRef
    52.Brawand D, Soumillon M, Necsulea A, Julien P, Csardi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8.PubMed CrossRef
    53.Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 2015;43:D670–81.PubMed PubMedCentral CrossRef
    54.Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2015. Nucleic Acids Res. 2015;43:D662–9.PubMed PubMedCentral CrossRef
    55.Kim J, Zhao K, Jiang P, Lu ZX, Wang J, Murray JC, et al. Transcriptome landscape of the human placenta. BMC Genomics. 2012;13:115.PubMed PubMedCentral CrossRef
    56.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed PubMedCentral CrossRef
    57.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.PubMed CrossRef
    58.Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.PubMed PubMedCentral CrossRef
    59.Picardi E, Pesole G. REDItools: high-throughput RNA editing detection made easy. Bioinformatics. 2013;29:1813–4.PubMed CrossRef
    60.Zhao K, Lu Z-x, Park JW, Zhou Q, Xing Y. GLiMMPS: Robust statistical model for regulatory variation of alternative splicing using RNA-Seq data. Genome Biol. 2013;14:R74.PubMed PubMedCentral CrossRef
    61.Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell. 2009;33:591–601.PubMed PubMedCentral CrossRef
  • 作者单位:Lan Lin (1)
    Peng Jiang (2)
    Juw Won Park (1) (3) (4)
    Jinkai Wang (1)
    Zhi-xiang Lu (1)
    Maggie P. Y. Lam (5)
    Peipei Ping (5) (6)
    Yi Xing (1)

    1. Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
    2. Regenerative Biology, Morgridge Institute for Research, Madison, WI, 53707, USA
    3. Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
    4. KBRIN Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
    5. Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
    6. Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Alu elements are major contributors to lineage-specific new exons in primate and human genomes. Recent studies indicate that some Alu exons have high transcript inclusion levels or tissue-specific splicing profiles, and may play important regulatory roles in modulating mRNA degradation or translational efficiency. However, the contribution of Alu exons to the human proteome remains unclear and controversial. The prevailing view is that exons derived from young repetitive elements, such as Alu elements, are restricted to regulatory functions and have not had adequate evolutionary time to be incorporated into stable, functional proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700