Interpreting drag consequences of ammonoid shells by comparing studies in Westermann Morphospace
详细信息    查看全文
  • 作者:Kathleen A. Ritterbush
  • 关键词:Mass extinction ; Functional morphology ; Evolution ; Paleobiology ; Morphometrics ; Mesozoic
  • 刊名:Swiss Journal of Palaeontology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:135
  • 期:1
  • 页码:125-138
  • 全文大小:2,262 KB
  • 参考文献:Akima, R. (2013). Fortran code by H. Akima R port by Albrecht Gebhardt aspline function by Thomas Petzoldt <thomas.petzoldt@tu-dresden.de> interp2xyz, enhancements and corrections by Martin Maechler (2013). akima: Interpolation of irregularly spaced data. R package version 0.5-11. http://​www.​CRAN.​R-project.​org/​package=​akima .
    Arkell, W. J., Frunish, W. M., Kummel, B., MIller, A. K., Moore, R. C., Shindewolf, O. H., Sylvester-Bradley, P. C., & Wright, W. C., 1957, Mollusca 4, Cephalopoda, Ammonoidea. New York: Geological Society of America.
    Chamberlain, J. (1976). Flow patterns and drag coefficients of cephalopod shells. Palaeontology, 19, 539–563.
    Chamberlain, J. A. (1980). The role of body extension in cephalopod locomotion. Palaeontology, 23, 445–461.
    Chamberlain, J. A. (1981). Hydromechanical design of fossil cephalopods. In: M. R. House, & J. R. Senior (Eds.) The Ammonoidea Special (vol. 18, pp. 289–336). London: Systematics Association
    Chamberlain, J. A., Jr, & Westermann, G. (1976). Hydrodynamic properties of cephalopod shell ornament. Paleobiology, 2, 316–331.
    Dera, G., Neige, P., Dommergues, J.-L., Fara, E., Laffont, R., & Pellenard, P. (2010). High-resolution dynamics of early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). Journal of the Geological Society, 167, 21–33.CrossRef
    Dommergues, J.-L., Laurin, B., & Meister, C. (2001). The recovery and radiation of early Jurassic ammonoids: morphologic versus palaeobiogeographical patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 195–213.CrossRef
    Dommergues, J.-L., Montuire, S., & Neige, P. (1996). Evolution of ammonoid morphospace during the early Jurassic radiation. Paleobiology, 22, 219–240. doi:10.1666/0094-8373(2002)028<0423:SPTTTC>2.0.CO;2.
    Elmi, S. (1991). Données expérimentales sur l’architecturefonctionnelle de la coquille des ammonoides jurassiques. Geobios, 13, 155–160.CrossRef
    Elmi, S. (1993). Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des céphalopodes (ammonoidés). Geobios, 15, 121–128.CrossRef
    Guex, J. (1995). Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires De Géologie Lausanne, 27, 1–131.
    Guex, J. (2001). Environmental stress and atavism in ammonoid evolution. Eclogae Geologicae Helvetiae, 94, 321–328.
    Guex, J. (2003). A generalization of Cope’s rule. Bulletin de la Société géologique de France, 174, 449–452.CrossRef
    Guex, J. (2006). Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters, 242, 240–253.CrossRef
    Hammer, O., & Bucher, H. (2006). Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontological Research, 10, 91–96. doi:10.​2517/​prpsj.​10.​91 .CrossRef
    Hone, D., & Benton, M. (2005). The evolution of large size: how does Cope’s rule work? Trends in Ecology and Evolution, 20, 4–6.CrossRef
    Jacobs, D. (1992). Shape, drag, and power in ammonoid swimming. Paleobiology, 18, 203–220.
    Jacobs, D. K., Landman, N. H., & Chamberlain, J. A. (1994). Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology, 22, 905–908.CrossRef
    Klug, C., & Korn, D. (2004). The origin of ammonoid locomotion. Acta Palaeontologica Polonica, 49, 235–242.
    Korn, D. (2010). A key for the description of Palaeozoic ammonoids. Fossil Record, 13, 5–12.CrossRef
    McGowan, A. J. (2004). Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology, 32, 665–668.CrossRef
    Monnet, C., Bucher, H., Guex, J., & Wasmer, M. (2011a). Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology, 55, 87–107. doi:10.​1111/​j.​1475-4983.​2011.​01112.​x .CrossRef
    Monnet, C., De Baets, K., & Klug, C. (2011b). Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology, 11, 115. doi:10.​1186/​1471-2148-11-115 .CrossRef
    Olóriz, F., Palmqvist, P., & Pérez-Carlos, J. A. (1997). Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia, 30, 191–204.CrossRef
    Olóriz, F., Palmqvist, P., & Pérez-Carlos, J. A. (2002). Morphostructural constraints and phylogenetic overprint on sutural frilling in Late Jurassic ammonites. Lethaia, 35, 158–168.CrossRef
    Raup, D.M., (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, p. 43–65.
    R Core Team, (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://​www.​R-project.​org/​ .
    Ritterbush, K. A., & Bottjer, D. J. (2012). Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology,. doi:10.​1666/​10027.​1 .
    Saunders, W. B., & Shapiro, E. A. (1986). Calculation and simulation of ammonoid hydrostatics. Paleobiology, 12, 64–79.
    Schaltegger, U., Guex, J., Bartolini, A., Schoene, B., & Ovtcharova, M. (2008). Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth and Planetary Science Letters, 267, 266–275.CrossRef
    Schoene, B., Guex, J., Bartolini, A., Schaltegger, U., & Blackburn, T. J. (2010). Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38, 387–390.CrossRef
    Selden, P. A. (2009). Mollusca 4, vol. 2. Carboniferous and Permian Ammonoidea: Part L (Revised). In: R. C. Moore (Ed.), Treatise on invertebrate paleontology. Lawrence: Geological Society of America, Boulder, Colo., and University of Kansas.
    Simon, M. S., Korn, D., & Koenemann, S. (2011). Temporal patterns in disparity and diversity of the Jurassic ammonoids of southern Germany. Fossil Record, 14, 77–94.CrossRef
    Smith , P.L., (1986). The implications of data base management systems to paleontology: a discussion of Jurassic ammonoid data. Journal of Paleontology, p. 327–340.
    Smith, P. L., Longridge, L. M., Grey, M., Zhang, J., & Liang, B. (2014). From near extinction to recovery: Late Triassic to Middle Jurassic ammonoid shell geometry. Lethaia, 47, 337–351. doi:10.​1111/​let.​12058 .CrossRef
    Smith, P. L., & Tipper, H. W. (1986). Plate tectonics and paleobiogeography: early Jurassic (Pliensbachian) endemism and diversity. Palaios, 1, 399–412.CrossRef
    Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer. ISBN 0-387-95457-0.CrossRef
    Westermann, G. E. G., (1996). Ammonoid life and habitat. In: N. Landman, K. Tanabe, R. A. Davis (Eds.), Ammonoid paleobiology (pp. 607–707). New York: Plenum Press.
    Westermann, G. E. G., & Tsujita, C. J. (1999). Life Habits of Ammonoids, chap. 21. In: E. Savazzi, (Ed.), Functional Morphology of the Invertebrate Skeleton (pp. 299–325). Chichester: Wiley.
    Yacobucci, M. M. (2004). Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research, 25, 927–944. doi:10.​1016/​j.​cretres.​2004.​09.​001 .CrossRef
  • 作者单位:Kathleen A. Ritterbush (1) (2)

    1. Department of the Geophysical Sciences, University of Chicago, 5734 S Ellis Ave, Chicago, IL, 60637, USA
    2. Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT, 84112, USA
  • 刊物主题:Paleontology;
  • 出版者:Springer Basel
  • ISSN:1664-2384
文摘
Differently-shaped ammonoid shells present varied hydrodynamic properties, but the relevance of shell shape to ammonoid paleoecology is unclear. To examine trends in ammonoid shell shape that relate to hydrodynamic consequences, we project ammonoid shell data into Westermann Morphospace. Operationally similar to other multivariate methods, Westermann Morphospace features a fixed frame and scaling calibrated around the most common planispiral morphotypes. First, results of hydrodynamic experiments are projected into the space, to test for associations between recognized morphotypes and measures of drag force. Discocone shell shapes produce minimal drag at small sizes and/or low speeds, while oxycone shells produce minimal drag at higher sizes and/or faster speeds. If hydrodynamic efficiency was a first-order selective pressure on shell shapes produced by ammonoids, an association is expected between larger adult shells and oxyconic geometry. To assess this, published shape data are shown in Westermann Morphospace to examine intervals of evolutionary interest. A rough analysis of Late Triassic ammonoid shell shapes shows the expected association between larger shells and oxyconic geometry, but the association is completely reversed immediately after the end-Triassic mass extinction, and the association does not return among the “recovered” middle Jurassic ammonoids. This suggests that hydrodynamics suited for high-metabolism rapid locomotion were not a first-order influence on shell shape immediately after the extinction, or that other hydrodynamic influences require assessment by different methods. Lastly, shells of a series of endemic chronospecies of Cretaceous Neogastroplites are compared, showing a shift to inclusion of more discoconic shells at smaller sizes, resulting in minimal drag for more of the ontogenetic series as a whole. Together, these results indicate that size must be considered when interpreting the hydrodynamic efficiency of ammonoid shells. Flank shape, ornament and soft tissue behaviors may be as or more important than first-order shell geometry, and quantification of their importance and influence on varied shell geometries will benefit from further experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700