Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells
详细信息    查看全文
  • 作者:Kristin P Bennett (1)
    Charles Bergeron (1)
    Evrim Acar (2)
    Robert F Klees (3)
    Scott L Vandenberg (4)
    Bülent Yener (2)
    George E Plopper (3)
  • 刊名:BMC Genomics
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:8
  • 期:1
  • 全文大小:718KB
  • 参考文献:1. Le Blanc K, Pittenger M: Mesenchymal stem cells: progress toward promise. / Cytotherapy 2005,7(1):36-5. CrossRef
    2. Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. / Int J Biochem Cell Biol 2004, 36:568-84. CrossRef
    3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. / Science 1999, 284:143-47. CrossRef
    4. Aubin JE: Advances in the osteoblast lineage. / Biochem Cell Biol 1998, 76:899-10. CrossRef
    5. Smith E, Redman RA, Logg CR, Coetzee GA, Kasahara N, Frenkel B: Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle. Dissociation of cyclin A-cyclin-dependent kinase 2 from E2F4-p130 complexes. / J Biol Chem 2000, 275:19992-0001. CrossRef
    6. Hou Z, Nguyen Q, Frenkel B, Nilsson SK, Milne M, van Wijnen AJ, Stein JL, Quesenberry P, Lian JB, Stein GS: Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. / Proc Natl Acad Sci USA 1999, 96:7294-299. CrossRef
    7. Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB: Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. / Mol Endocrinol 1997, 11:1681-694. CrossRef
    8. Song L, Tuan RS: Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. / FASEB J 2004, 18:980-82.
    9. Song L, Webb NE, Song Y, Tuan RS: Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. / Stem Cells 2006, 24:1707-718. CrossRef
    10. Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. / Cell 2006, 126:677-89. CrossRef
    11. Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE: Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK dependent pathway. / Mol Biol Cell 2005, 16:881-90. CrossRef
    12. Salasznyk RM, Klees RF, Hughlock MK, Plopper GE: ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. / Cell Commun Adhes 2004, 11:137-53. CrossRef
    13. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE: Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. / J Biomed Biotechnol 2004, 2004:24-4. CrossRef
    14. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT: Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. / J Bone Miner Res 2002, 17:101-10. CrossRef
    15. Salasznyk RM, Klees RF, Vandenberg S, Bennett K, Plopper GE: Gene focusing as a basis for controlling stem cell differentiation. / Stem Cells Dev 2005, 14:608-20. CrossRef
    16. Klees RF, Salasznyk RM, Vandenberg S, Bennett K, Plopper GE: Laminin-5 activates extracellular matrix production and osteogenic gene focusing in human mesenchymal stem cells. / Matrix Biol 2007, 26:106-14. CrossRef
    17. Bortell R, Barone LM, Tassinari MS, Lian JB, Stein GS: Gene expression during endochondral bone development: evidence for coordinate expression of transforming growth factor beta 1 and collagen type I. / J Cell Biochem 1990, 44:81-1. CrossRef
    18. Pace JM, Chitayat D, Atkinson M, Wilcox WR, Schwarze U, Byers PH: A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases. / J Med Genet 2002, 39:23-9. CrossRef
    19. Aszodi A, Bateman JF, Gustafsson E, Boot-Handford R, Fassler R: Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? / Cell Struct Funct 2000, 25:73-4. CrossRef
    20. Cool SM, Nurcombe V: Substrate induction of osteogenesis from marrow-derived mesenchymal precursors. / Stem Cells Dev 2005, 14:632-42. CrossRef
    21. Mizuno M, Kuboki Y: Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. / J Biochem (Tokyo) 2001, 129:133-38.
    22. Xiao G, Wang D, Benson MD, Karsenty G, Franceschi RT: Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. / J Biol Chem 1998, 273:32988-2994. CrossRef
    23. Wall ME, Rechtsteiner A, Rocha LM: Singular Value Decomposition and Principal Component Analysis. / A Practical Approach to Microarray Data Analysis / (Edited by: Berrar DP, Dubitzky W, Granzow M). Norwell MA: Kluwer 2003, 91-09. CrossRef
    24. Tucker LR: Some mathematical notes on three-mode factor analysis. / Psychometrika 1966, 31:279-11. CrossRef
    25. Hayman MW, Christie VB, Keating TS, Przyborski SA: Following the differentiation of human pluripotent stem cells by proteomic identification of biomarkers. / Stem Cells Dev 2006, 15:221-31. CrossRef
    26. Shi S, Robey PG, Gronthos S: Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. / Bone 2001, 29:532-39. CrossRef
    27. Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG: MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. / Stem Cells 2001, 19:408-18. CrossRef
    28. Jia L, Young MF, Powell J, Yang L, Ho NC, Hotchkiss R, Robey PG, Francomano CA: Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis. / Genomics 2002, 79:7-7. CrossRef
    29. Alter O, Golub GH: Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. / Proc Natl Acad Sci USA 2005, 102:17559-7564. CrossRef
    30. Fu CA, Shen M, Huang BC, Lasaga J, Payan DG, Luo Y: TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. / J Biol Chem 1999, 274:30729-0737. CrossRef
    31. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, Hayashi H, Sugano S: Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. / Oncogene 2003, 22:3307-318. CrossRef
    32. Salasznyk RM, Westcott AM, Klees RF, Ward DF, Xiang Z, Vandenberg S, Bennett K, Plopper GE: Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. / Stem Cells Dev 2005, 14:354-66. CrossRef
    33. Parker GC, Anastassova-Kristeva M, Eisenberg LM, Rao MS, Williams MA, Sanberg PR, English D: Stem cells: shibboleths of development, part II: Toward a functional definition. / Stem Cells Dev 2005, 14:463-69. CrossRef
    34. Tang CH, Yang RS, Huang TH, Liu SH, Fu WM: Enhancement of fibronectin fibrillogenesis and bone formation by basic fibroblast growth factor via protein kinase C-dependent pathway in rat osteoblasts. / Mol Pharmacol 2004, 66:440-49.
    35. Liang M, Liao EY, Xu X, Luo XH, Xiao XH: Effects of progesterone and 18-methyl levonorgestrel on osteoblastic cells. / Endocr Res 2003, 29:483-01. CrossRef
    36. Yuan J, Murrell GA, Trickett A, Landtmeters M, Knoops B, Wang MX: Overexpression of antioxidant enzyme peroxiredoxin 5 protects human tendon cells against apoptosis and loss of cellular function during oxidative stress. / Biochim Biophys Acta 2004, 1693:37-5. CrossRef
    37. Kainulainen T, Pender A, D'Addario M, Feng Y, Lekic P, McCulloch CA: Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. / J Biol Chem 2002, 277:21998-2009. CrossRef
    38. Nakamura F, Hartwig JH, Stossel TP, Szymanski PT: Ca2+ and calmodulin regulate the binding of filamin A to actin filaments. / J Biol Chem 2005, 280:32426-2433. CrossRef
    39. Tsutsumi S, Yanagawa T, Shimura T, Fukumori T, Hogan V, Kuwano H, Raz A: Regulation of cell proliferation by autocrine motility factor/phosphoglucose isomerase signaling. / J Biol Chem 2003, 278:32165-2172. CrossRef
    40. Martins da Silva SJ, Bayne RA, Cambray N, Hartley PS, McNeilly AS, Anderson RA: Expression of activin subunits and receptors in the developing human ovary: activin A promotes germ cell survival and proliferation before primordial follicle formation. / Dev Biol 2004, 266:334-45. CrossRef
    41. Williams WA, Schapiro NE, Christy SR, Weber GL, Salasznyk RM, Plopper GE: Diminished Gene Expression in human Mesenchymal Stem Cells by Mutation of Focal Adhesion Kinase Signaling. / J Stem Cells 2006, 1:173-82.
    42. Entrez Gene [http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene]
    43. International Protein Index [http://www.ebi.ac.uk/IPI/IPIhelp.html]
    44. International Protein Index Current Datasets [ftp://ftp.ebi.ac.uk/pub/databases/IPI/current/]
    45. Database for Annotation, Visualization and Integrated Discovery [http://david.abcc.ncifcrf.gov/]
    46. De Lathauwer L, De Moor B, Vandewall JA: A multilinear Singular Value Decomposition. / SIAM J Matrix Anal Appl 2000, 21:1253-278. CrossRef
    47. Eigenvector Research, PLS Toolbox [http://software.eigenvector.com/#pls]
    48. Smilde AK, Bro R, Geladi P: / Multi-way Analysis with Applications in the Chemical Sciences Chichester, England: Wiley 2004. CrossRef
  • 作者单位:Kristin P Bennett (1)
    Charles Bergeron (1)
    Evrim Acar (2)
    Robert F Klees (3)
    Scott L Vandenberg (4)
    Bülent Yener (2)
    George E Plopper (3)

    1. Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8 Street, 12180, Troy, NY, USA
    2. Department of Computer Science, Rensselaer Polytechnic Institute, 110 8 Street, 12180, Troy, NY, USA
    3. Department of Biology, Rensselaer Polytechnic Institute, 110 8 Street, 12180, Troy, NY, USA
    4. Department of Computer Science, Siena College, 515 Loudon Road, 12211, Loudonville, NY, USA
文摘
Background Recently, we demonstrated that human mesenchymal stem cells (hMSC) stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6): 1608-0, 2005). Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM) proteins (collagen I, vitronectin, or laminin-5) or osteogenic media supplements (OS media). Specifically, we annotate these four protein expression profiles, as well as profiles from na?ve hMSC and differentiated human osteoblasts (hOST), with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. Results Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between na?ve hMSC, partially differentiated hMSC, and hOST. Conclusion The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700