N–H bond cleavage of ammonia on graphene-like B36 borophene: DFT studies
详细信息    查看全文
  • 作者:Zahra Rostami ; Hamed Soleymanabadi
  • 关键词:Graphene ; like ; Nanostructure ; Self ; interaction error ; Boron compound
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 全文大小:1,587 KB
  • 参考文献:1.Nakajima Y, Kameo H, Suzuki H (2006) Cleavage of nitrogen–hydrogen bonds of ammonia induced by triruthenium polyhydrido clusters. Angew Chem Int Ed 45(6):950–952CrossRef
    2.Zhao J, Goldman AS, Hartwig JF (2005) Oxidative addition of ammonia to form a stable monomeric amido hydride complex. Science 307(5712):1080–1082CrossRef
    3.Zhao J-X, Xiao B, Ding Y-H (2009) Theoretical prediction of the N−H and O−H bonds cleavage catalyzed by the single-walled silicon carbide nanotube. J Phys Chem C 113(38):16736–16740CrossRef
    4.Moradi M, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Cation-π interaction of alkali metal ions with C24 fullerene: a DFT study. J Mol Model 18:3535–3540CrossRef
    5.Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) Electronic sensor for sulfide dioxide based on AlN nanotubes: a computational study. J Mol Model 18:4745–4750CrossRef
    6.Peyghan AA, Noei M, Tabar MB (2013) A large gap opening of graphene induced by the adsorption of Co on the Al-doped site. J Mol Model 19(8):3007–3014CrossRef
    7.Ahmadi A, Beheshtian J, Kamfiroozi M (2012) Benchmarking of ONIOM method for the study of NH3 dissociation at open ends of BNNTs. J Mol Model 18(5):1729–1734CrossRef
    8.Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2013) Ab initio study of NH 3 and H 2 O adsorption on pristine and Na-doped MgO nanotubes. Struct Chem 24:165–170CrossRef
    9.Beheshtian J, Peyghan AA, Bagheri Z (2012) Carbon nanotube functionalization with carboxylic derivatives: a DFT study. J Mol Model 19:391–396CrossRef
    10.Soltani A, Ahmadi Peyghan A, Bagheri Z (2013) H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys E 48:176–180CrossRef
    11.Ahmadi A, Beheshtian J, Hadipour NL (2011) Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem 22(1):183–188CrossRef
    12.Pham HT, Duong LV, Tam NM, Pham-Ho MP, Nguyen MT (2014) The boron conundrum: bonding in the bowl B30 and B36, fullerene B40 and triple ring B42 clusters. Chem Phys Lett 608:295–302CrossRef
    13.Li W-L, Chen Q, Tian W-J, Bai H, Zhao Y-F, Hu H-S, Li J, Zhai H-J, Li S-D, Wang L-S (2014) The B35 Cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am Chem Soc 136(35):12257–12260CrossRef
    14.Li W-L, Pal R, Piazza ZA, Zeng XC, Wang L-S (2015) B27−: Appearance of the smallest planar boron cluster containing a hexagonal vacancy. J Chem Phys 142(20):204305CrossRef
    15.Piazza ZA, Hu H-S, Li W-L, Zhao Y-F, Li J, Wang L-S (2014) Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun 5:3113–3117CrossRef
    16.Chen Q, Wei G-F, Tian W-J, Bai H, Liu Z-P, Zhai H-J, Li S-D (2014) Quasi-planar aromatic B 36 and B 36− clusters: all-boron analogues of coronene. Phys Chem Chem Phys 16(34):18282–18287CrossRef
    17.Liu C-S, Wang X, Ye X-J, Yan X, Zeng Z (2014) Curvature and ionization-induced reversible hydrogen storage in metalized hexagonal B36. J Chem Phys 141(19):194306CrossRef
    18.Valadbeigi Y, Farrokhpour H, Tabrizchi M (2015) Adsorption of small gas molecules on B36 nanocluster. J Chem Sci 127(11):2029–2038CrossRef
    19.Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRef
    20.Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRef
    21.Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Accounts 108(3):134–142CrossRef
    22.Politzer P, Murray JS (1991) Molecular electrostatic potentials and chemical reactivity. Rev Comput Chem 2:273–312CrossRef
    23.Wiberg KB (1997) Properties of some condensed aromatic systems. J Org Chem 62(17):5720–5727CrossRef
    24.Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sensors Actuators B: Chem 171–172:846–852CrossRef
    25.Ahmadi A, Hadipour NL, Kamfiroozi M, Bagheri Z (2012) Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde. Sensors Actuators B: Chem 161:1025–1029CrossRef
    26.Peyghan AA, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studiess. J Phys Chem C 117(5):2427–2432
    27.Baei MT, Peyghan AA, Bagheri Z (2012) A computational study of AlN nanotube as an oxygen detector. Chin Chem Lett 23:965–968CrossRef
    28.Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) B-doping makes the carbon nanocones sensitive towards NO molecules. Phys Lett A 377:107–111CrossRef
    29.Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct Chem 23:1567–1572CrossRef
    30.Beheshtian J, Peyghan AA, Noei M (2013) Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors Actuators B: Chem 181:829–834CrossRef
    31.Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101CrossRef
    32.Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1-3):215–241CrossRef
    33.Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110(49):13126–13130CrossRef
    34.Peyghan AA, Noei M (2014) The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. Phys B Condens Matter 432:105–110CrossRef
    35.Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2013) Density-functional calculations of HCN adsorption on the pristine and Si-doped graphynes. Struct Chem 25:1–7CrossRef
    36.Peyghan AA, Noei M (2014) Hydrogen fluoride on the pristine, Al and Si doped BC2N nanotubes: a computational study. Comput Mater Sci 82:197–201CrossRef
    37.Beheshtian J, Peyghan AA, Bagheri Z (2013) Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J Mol Model 19(6):2197–2203CrossRef
    38.Cohen AJ, Mori-Sánchez P, Yang W (2008) Insights into current limitations of density functional theory. Science 321(5890):792–794CrossRef
    39.Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Isr J Chem 33(4):449–454CrossRef
  • 作者单位:Zahra Rostami (1)
    Hamed Soleymanabadi (2)

    1. Department of Chemistry, Payame Noor University (PNU), PO Box, 19395-3697, Tehran, Iran
    2. Young Researchers and Elite Club, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Ammonia N–H bond cleavage at metal-free substrates has attracted great attention because of its industrial importance. Here, we investigate the dissociative adsorption of ammonia onto the surface of a B36 borophene sheet by means of density functional theory calculations. We show that the N–H bond may be broken at the edges of B36 even at room temperature, regarding the small energy barrier of 14.1–19.3 kcal mol−1 at different levels of theory, and more negative Gibbs free energy change. Unlike basis set size, the kind of exchange correlation functional significantly affects the electronic properties of the studied systems. Also, by increasing the percentage of Hartree Fock (HF) exchange of density functionals, the activation and adsorption energies are lowered. A linear relationship between the highest occupied molecular orbital or lowest unoccupied molecular orbital of B36 borophene and the %HF exchange of functionals is predicted. Our work reveals that pure whole boron nanosheets may be promising metal-free materials in N–H bond cleavage, which would raise the potential application of these sheets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700