Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation
详细信息    查看全文
  • 作者:Kaouthar Feki (1)
    Francisco J. Quintero (2)
    Jose M. Pardo (2)
    Khaled Masmoudi (1) khaled.masmoudi@cbs.rnrt.tn
  • 关键词:Na+/H+ antiporter SOS1 &#8211 ; Auto ; inhibitory domain &#8211 ; Phosphorylation &#8211 ; SOS2 &#8211 ; Salt stress &#8211 ; Triticum durum
  • 刊名:Plant Molecular Biology
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:76
  • 期:6
  • 页码:545-556
  • 全文大小:495.2 KB
  • 参考文献:1. Agarwal SK, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821. doi:
    2. An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation: proton antiporter 1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728. doi:
    3. Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu JK (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790. doi:
    4. Boeke JD, Eichinger D, Castrillon D, Fink GR (1988) The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1. Mol Cell Biol 8:1432–1442
    5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:
    6. Brini F, Amara I, Feki K, Hanin M, Khoudi H, Masmmoudi K (2009) Physiological and molecular analyses of seedling of two Tunisian durum wheat (Triticum turgidum L.subsp. Durum [Desf.]) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31:145–154. doi:
    7. Brunelli JP, Pall ML (1993) A series of yeast/Escherichia coli λ expression vectors designed for directional cloning of cDNAs and crelox-mediated plasmid excision. Yeast 9:1309–1318. doi:
    8. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928. doi:
    9. Cheng NH, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926. doi:
    10. Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+- induced SOS1 mRNA stability in Arabidopsis. Plant J 53:554–565. doi:
    11. Cosentino C, Fischer-Schliebs E, Bertl A, Thiel G, Homann U (2010) Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Phytol 186:669–680. doi:
    12. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818. doi:
    13. Dubcovsky J, Santa Mar铆a G, Epstein E, Luo MC, Dovor谩k J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454. doi:
    14. Dvor谩k J, Noman MM, Goyal S, Gorhman J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87:872–877. doi:
    15. Elble R (1992) A simple and efficient procedure for transformation of yeast. BioTechniques 13:18–20
    16. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York
    17. Gong D, Guo Y, Jagendorf AT, Zhu JK (2002) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256–264. doi:
    18. Gong D, Guo Y, Schumaker KS, Zhu JK (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134:919–926. doi:
    19. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for salt tolerance. Plant Cell 13:1383–1399. doi:
    20. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449. doi:
    21. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740. doi:
    22. Haro R, Rodr铆guez-Navarro A (2002) Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564:114–122. doi:
    23. Haro R, Banuelos MA, Quintero FJ, Rubio F, Rodriguez-Navarro A (1993) Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant 89:868–874. doi:
    24. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932. doi:
    25. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668. doi:
    26. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1 , a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727. doi:
    27. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678. doi:
    28. James RA, Davenport R, Munns R (2006) Physiological characterisation of two genes for Na+ exclusion in wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547. doi:
    29. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29:1220–1234. doi:
    30. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945. doi:
    31. Liu J, Ishitani M, Halfter U, Kim CO, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that it is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734. doi:
    32. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012. doi:
    33. M盲ser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667. doi:
    34. Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–723. doi:
    35. Mullan DJ, Colmer TD, Francki MG (2007) Arabidopsis–rice–wheat gene orthologues for Na+ transport and transcript analysis in wheat–L. elongatum aneuploids under salt stress. Mol Genet Genomics 277:199–212. doi:
    36. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222. doi:
    37. Ol铆as R, Eljakaoui Z, Li J, De Morales PA, Mar铆n-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916. doi:10.1111/j.1365-3040.2009.01971.x
    38. Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21:185–196. doi:
    39. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199. doi:
    40. Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164
    41. Qiu Q, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441. doi:
    42. Quan R, Lin H, Mendoza I, Zhang Y et al (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431. doi:
    43. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066. doi:
    44. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY et al (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA 108:2611–2616. doi:
    45. Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. J Exp Bot 62:1201–1216. doi:
    46. Rodriguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945
    47. Sanchez-Barrena MJ, Ripoll MM, Zhu JK, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345:1253–1264. doi:
    48. Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D-genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269. doi:
    49. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. doi:
    50. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477. doi:
    51. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpressing of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnol 21:81–85. doi:
    52. Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168. doi:
    53. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709. doi:
    54. Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74:367–380. doi:
    55. Tester M, Davenport RJ (2003) Na+ transport and Na+ tolerance in higher plants. Ann Bot 91:503–527. doi:
    56. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2010) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep. doi: 10.1007/s11033-010-0624-y (in press)
    57. Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627. doi:
    58. Wu Y, Ding N, Zhao X, Zhao M, Chang Z, Liu J, Zhang L (2007) Molecular characterization of PeSOS1: the putative Na+/H+ antiporter of Populus euphratica. Plant Mol Biol. 65(1–2):1–11. doi: 10.1007/s11103-007-9170-y (Epub 2007 Jun 30)
    59. Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na/H antiporter in yeast. Arch Biochem Biophys 473:8–15. doi:
    60. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31. doi:
    61. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773. doi:
    62. Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948. doi:
  • 作者单位:1. Plant Protection and Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P 鈥?177鈥? 3018 Sfax, Tunisia2. Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cient铆ficas, 41012 Sevilla, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
We have identified a plasma membrane Na+/H+ exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na+ efflux proteins showed complementation of the Na+- and Li+-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT–PCR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700