Heat-exchanger piles for the de-icing of bridges
详细信息    查看全文
  • 作者:Fabrice Dupray (1)
    Chao Li (1)
    Lyesse Laloui (1) (2)
  • 关键词:Energy piles ; Natural groundwater flow ; THM couplings
  • 刊名:Acta Geotechnica
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:9
  • 期:3
  • 页码:413-423
  • 全文大小:
  • 参考文献:1. Amatya B, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. G茅otechnique 62(6):503鈥?19 CrossRef
    2. ASHRAE (1995) Snow melting. In: ASHRAE (ed) Heating, ventilating and air-conditioning Applications, vol 4. ASHRAE Handbook. Atlanta, pp 46.41鈥?3
    3. Bertrand J (1986) Palier 10鈥擫es Evouettes, 茅tude hydrog茅ologique: rapport sur l鈥櫭﹖at de la nappe d鈥檈au souterraine apr猫s trois ann茅es d鈥櫭﹖ude (1983鈥?985). Evaluation des impacts d鈥檜n barrage sur la nappe et recommendations, Hydro-Rh么ne SA pour EOS (in French)
    4. Bourne-Webb PJ, Amatya B, Soga K, Amis T, Davidson C, Payne P (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. G茅otechnique 59(3):237鈥?48 CrossRef
    5. Charlier R (1987) Approche unifi茅e de quelques probl猫mes non lin茅aires de m茅canique des milieux continus par la m茅thode des 茅l茅ments finis. PhD thesis, Universit茅 de Li猫ge, Belgium (in French)
    6. Charlier R, Radu J-P, Collin F (2001) Numerical modelling of coupled transient phenomena. Rev Fr G茅nie Civ 5(6):719鈥?43 CrossRef
    7. Chiasson A, Spitler J (2001) Modeling approach to design of a ground-source heat pump bridge deck heating system. Transp Res Rec J Transp Res Board 1741(1):207鈥?15 CrossRef
    8. Collin F (2003) Couplages thermo-hydro-m茅caniques dans les sols et les roches tendres partiellement satur茅s. PhD thesis, Universit茅 de Li猫ge, Belgium (in French)
    9. Conus & Bignens, Amsler Bombeli & Associ茅s (2009) Rapport g茅otechnique pour le Pont sur le Grand Canal, H144 (in French)
    10. Dupray F, Mimouni T, Laloui L (2013) Alternative uses of heat-exchanger geostructures. In: Laloui L, Di Donna A (eds) Energy geostructures. Wiley, Hoboken, pp 119鈥?38 CrossRef
    11. Dupray F, Laloui L, Kazangba A (2014) Numerical analysis of seasonal heat storage in an energy pile foundation. Comput Geotech 55:67鈥?7 CrossRef
    12. Eugster WJ, Schatzmann J (2002) Harnessing solar energy for winter road clearing on heavily loaded expressways. Paper presented at the XIth PIARC Winter Road Congress, Sapporo, Japan, 28鈥?1 Jan 2002
    13. Knellwolf C, P茅ron H, Laloui L (2011) Geotechnical analysis of heat exchanger piles. J Geotech Geoenviron Eng (ASCE) 137(10):890鈥?02 CrossRef
    14. Laloui L, Di Donna A (eds) (2013) Energy Geostructures: Innovation in underground engineering. Civil engineering and geomechanics series. ISTE Ltd. and John Wiley and Sons, Hoboken
    15. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8):763鈥?81 CrossRef
    16. Liu X, Rees SJ, Spitler JD (2007) Modeling snow melting on heated pavement surfaces. Part I: Model development. Appl Therm Eng 27(5鈥?):1115鈥?124 CrossRef
    17. Mackert K-U (2011) Kanalbr眉cke Berkenthin mit temperierter Fahrbahn (A bridge with thermally-controlled roadway in Berkenthin). Paper presented at the Expertengespr盲ch Stahlbr眉ckenbau, Bergisch Gladbach, DE, 27 Sept 2011 (in German)
    18. Mattsson N, Steinmann G, Laloui L (2008) Advanced compact device for the in situ determination of geothermal characteristics of soils. Energy Build 40(7):1344鈥?352 CrossRef
    19. Minsk LD (1999) Heated bridge technology: Report on ISTEA Sec. 6005 Program FHWA-RD-99-158, Federal Highway Administration, Washington, DC, USA
    20. Miyamoto S, Takeuchi M (2002) Snow-melting and de-icing system on road using natural thermal energy sources. Paper presented at the XIth PIARC Winter Road Congress, Sapporo, Japan, 28鈥?1 Jan 2002
    21. Miyamoto S, Takeuchi M (2005) Snow-melting system on road using seasonal energy storage through foundation piles for bridge. In: Proceedings of JSCE (Japan Society of Civil Engineers) 797:51鈥?2 (in Japanese)
    22. Nagai N, Miyamoto S, Nishiwaki M, Takeuchi M (2009) Numerical simulation of snow melting on pavement surface with heat dissipation pipe embedded. Heat Transf Asian Res 38(5):313鈥?29 CrossRef
    23. Pahud D (2007) Serso, stockage saisonnier solaire pour le d茅givrage d鈥檜n pont. Rapport final, Office f茅d茅ral de l鈥櫭﹏ergie, Berne (CH)
    24. Pahud D (2008) BRIDGESIM: outil de simulation pour le d茅givrage de pont par 茅nergie solaire (BRIDGESIM: a simulation tool for bridge de-icing with solar energy). Paper presented at the 15. Schweizerisches Status-Seminar 鈥淓nergie- un Umweltforschung im Bauwesen鈥? Z眉rich, CH (in French)
    25. Parriaux A, Nicoud G (1993) De la montagne 脿 la mer, les formations glaciaires et l鈥檈au souterraine. Exemple du contexte Nord-alpin occidental. Quaternaire 4(2鈥?):61鈥?7 (in French) CrossRef
    26. Perrier N, Langevin A, Campbell JF (2006) A survey of models and algorithms for winter road maintenance. Part I: system design for spreading and plowing. Comput Oper Res 33(1):209鈥?38 CrossRef
  • 作者单位:Fabrice Dupray (1)
    Chao Li (1)
    Lyesse Laloui (1) (2)

    1. Laboratory for Soil Mechanics (LMS), School of Architecture, Civil and Environmental Engineering (ENAC), 脡cole Polytechnique F茅d茅rale de Lausanne (EPFL), GC Station 18, 1015, Lausanne, Switzerland
    2. King Abdulaziz University, Jeddah, Saudi Arabia
  • ISSN:1861-1133
文摘
Of the various types of road structures, bridges are the most exposed to icing; the problem of icing is widely addressed through salting, which reduces the lifespan of the bridge. One promising solution to avoid the use of salt is the seasonal storage of solar heat energy captured directly through the asphalt layer; however, this solution can only be achieved cost effectively if a necessary geostructure is used as a heat exchanger. In this study, such an approach is studied for a bridge crossing a canal, and the geotechnical and energy-related challenges of such a solution are discussed. Bridge piers and abutments are located on piles, which are used as heat exchangers. Depending on local conditions, seasonal storage and natural thermal reload are two possible solutions for the operation of such a system. In particular, the presence of underground water flow is thought to be a significant factor in such a design and is considered here. This study aims to determine the geotechnical and energy design parameters through thermo-hydro-mechanical simulations. A three-dimensional finite-element model analysis is necessary given the distance between bridge piles. Various underground water flow scenarios are studied. The capture of energy and de-icing requirements is based on the few existing structures that use other means of energy exchange with the ground. The results indicate that the use of heat-exchanger piles for de-icing bridges can only be considered at specific sites; however, the efficiency of the solution at those sites is high. Possible foundation and structure stability problems are also considered, such as vertical displacements due to the dual use of the foundation piles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700