Excited-State Hydrogen Bonding Dynamics of Hydrogen-Bonded Clusters Formed by of Coumarin Derivatives in Aqueous Solution: A Time-Dependent Density Functional Theory Study
详细信息    查看全文
  • 作者:Mingzhen Zhang (1)
    Changxin Zhao (1) zhaochangxin@126.com
    Yi Wang (1) dlpu_wangyi@126.com
  • 关键词:Excited state &#8211 ; Hydrogen bond dynamics
  • 刊名:Journal of Cluster Science
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:23
  • 期:2
  • 页码:535-544
  • 全文大小:383.8 KB
  • 参考文献:1. K. L. Han and G. J. Zhao Hydrogen Bonding and Transfer in the Excited State (Wiley, Chichester, 2010).
    2. M. Simona and J. James (2010). J. Phys. Chem. A. 114(51), 13376–13380.
    3. D. Vaibhav, R. Prakash, and B. Prasad (2010). J. Mol. Struct. Theochem. 962, 97–100.
    4. N. Y. Indra, M. A. Subha, and G. Sastry (2010). J. Phys. Chem. B. 114, (51), 17162–17171.
    5. K. Makoto, N. Kennichi, and L. Yunfeng (2010). J. Am. Chem. Soc. 132, (51), 18281–18286.
    6. P. Seokan and K. Hae-Jo (2010). Chem. Commun. 46, 9197–9199.
    7. M. Meot-Ner (2005). Chem. Rev. 105, 213–284.
    8. T. Steiner (2002). Angew. Chem. Int. Ed. 41, 48–76.
    9. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler (2003). Science 301, 1698–1702.
    10. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.
    11. K. L. Han and G. Z. He (2008). J. Photochem. Photobiol. C. 8, 55.
    12. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A. 113, 14329.
    13. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A. 113, 4788.
    14. E. Krystkowiak and A. Maciejewski (2011). Phys. Chem. Chem. Phys. 13, 11317–11324.
    15. G. J. Zhao, R. K. Chen, M. Sun, G. Y. Li, J. Liu, Y. Gao, K. L. Han, X. Yang, and L. C. Sun (2008). Chem. Eur. J. 14, 6935–6947.
    16. Y. Nagasawa, A. P. Yartsev, K. Tominaga, A. E. Johnson, and K. Yoshihara (1994). J. Chem. Phys. 101, 5717.
    17. D. B. Janet and J. A. Pople (1969). Chem. Phys. Lett. 47, 426–428.
    18. D. B. Janet and J. A. Pople (1970). J. Chem. Phys. 52, 4858.
    19. D. B. Janet and M. T. Jordan (2001). J. Mol. Struct. Theochem. 573, 11–23.
    20. S. N. Datta, B. S. Prabhakar, and V. Nehra (1999). J. Phys. Chem. B. 103, 2291–2296.
    21. J. Rezac and P. Hobza (2012). J. Chem. Theory Comput. 8, 141–151.
    22. M. I. Bernal, M. C. Martins, C. Millot, and M. F. Ruiz (2000). J. Comput. Chem. 21, (7), 572–581.
    23. Y. L. Wang and J. R. Gunn (1999). Int. J. Quantum Chem. 73, 357–367.
    24. J. Zeng, N. S. Hush, and J. R. Reimers (1993). J. Chem. Phys. 99, 1508.
    25. G. J. Zhao and K. L. Han (2008). ChemPhysChem. 9, 1842–1846.
    26. H. F. Wang, M. S. Wang, E. F. Liu, M. L. Xin, and C. L. Yang (2011). Comput. Theor. Chem. 964, 243–247.
    27. H. F. Wang, M. S. Wang, M. L. Xin, E. F. Liu, and C. L. Yang (2011). Cent. Eur. J. Phys. 9, 792–799.
    28. J. J. Tan, C. Hao, N. N. Wei, M. X. Zhang, and X. Y. Dai (2011). J. Theor. Comput. Chem. 10, (3), 1–8.
    29. H. Q. Li, C. Li, and J. X. Li (2011). Dyes Pigments 91, (3), 309–316.
    30. S. Koneni, K. Abdhesh, and K. Manoj (2010). Bioorg. Med. Chem. Lett. 20, (24), 7205–7211.
    31. G. J. Zhao, B. H. Northrop, P. J. Stang, and K. L. Han (2010). J. Phys. Chem. A. 114, 3418.
    32. B. M. Antoaneta, S. Nagahiro, and T. Osamu (2010). Appl. Surf. Sci. 257, (5), 1792–1799.
    33. S. Abhigyan and H. Partha (2010). Chem. Phys. Lett. 501, (1–3), 33–38.
    34. J. Farnaz, J. Nafiseh, and O. M. Amiri (2010). Tetrahedron 66, (49), 9508–9511.
    35. A. I. Mosa, A. A. Adel, and J. M. Yousef (2011). Spectrochim. Acta A. 81, (1), 35–43.
    36. D. Tehsina, R. Claire, and W. Christina (2011). Bioorg. Med. Chem. Lett. 21, (19), 5770–5773.
    37. M. Yanez, J. Leiro, and J. A. Arranz (2011). Basic Clin. Pharmacol. Toxicol. 109, (2), 47–48.
    38. P. Mehtab, A. Akhtar, and M. A. Mohammed (2011). Chem. Pap. 65, (5), 735–738.
    39. J. Amit, S. Vijay, and R. Rajkumar (2011). Dyes Pigments 91, (1), 33–43.
    40. P. K. Teskac, P. Stane, and G. Biljana (2011). Int. J. Pharm. 416, (1), 384–393.
    41. Z. L. Cai and J. R. Reimers (2000). J. Chem. Phys. 112, 527.
    42. Z. L. Cai, D. J. Tozer, and J. R. Reimers (2000). J. Chem. Phys. 113, 7084.
    43. Z. L. Cai and J. R. Reimers (2002). J. Phys. Chem. A. 106, 8769.
    44. Z. L. Cai and J. R. Reimers (2005). J. Phys. Chem. A. 109, 1576.
    45. M. G. Dahlbom and J. R. Reimers (2004). Mol. Phys. 103, 1057.
    46. A. L. Sobolewski and W. Domcke (2004). J. Phys. Chem. A. 108, 10917.
    47. A. L. Sobolewski, W. Domcke, and C. Hattig (2006). J. Phys. Chem. A. 110, 6301.
    48. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B. 111, 8940.
    49. G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010.
    50. G. J. Zhao, K. L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955–1958.
    51. G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306.
    52. G. J. Zhao, B. H. Northrop, K. L. Han, and P. J. Stang (2010). J. Phys. Chem. A. 114, 9007–9013.
    53. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A. 111, 9218–9223.
    54. G. J. Zhao and K. L. Han (2007). Phys. Chem. A. 111, 2469–2474.
    55. G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404–413.
  • 作者单位:1. School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034 People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
The time-dependent density functional theory and the density functional theory are used to investigate the nature of hydrogen bonds formed by the derivative of the coumarin (TFKC) and the water molecules. The ground-state geometry optimizations, electronic excited energies and corresponding oscillation strengths for the TFKC monomer, the hydrogen-bonded TFKC–Water (HBA) dimer, TFKC–Water (HBB) dimer and TFKC–2Water complex are calculated. We find that, upon photoexcitation, the weaker hydrogen bond in the ground state will be affected by the relatively large impact for TFKC in the water. For better understanding the properties of the hydrogen bonds in the excited states, the frontier molecular orbitals of the S0 and S1 states are shown, and we find the obvious electron density transitions form the water molecules to the TFKC monomer. The electron transfer is expected to be the reason the hydrogen bond dynamics happens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700