Transit spectroscopy of exoplanets from space: how to optimize the wavelength coverage and spectral resolving power
详细信息    查看全文
  • 作者:T. Encrenaz ; G. Tinetti ; M. Tessenyi ; P. Drossart ; P. Hartogh…
  • 关键词:Exoplanets ; Infrared spectroscopy ; Molecular spectroscopy
  • 刊名:Experimental Astronomy
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:40
  • 期:2-3
  • 页码:523-543
  • 全文大小:3,466 KB
  • 参考文献:1.Batalha, N. M., Rowe, J. F.; Bryson, S. T., Barclay, T., Burke, C. J., Caldwell, D. A., Christiansen, J. L., Mullally, F., Thompson, S. E.; Brown, T. M. et aL Planetary candidates observed by Kepler. III. 2013 Analysis of the first 16 months of data, Astrophys. J. Supp. 204, id.24, 21 pp. (2013)
    2.Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Detection of an extrasolar atmosphere. Astrophys. J. 568, 377–384 (2002)CrossRef ADS
    3.Tinetti, G., Vidal-Madjar, A., Liang, M.C., Beaulieu, J.-P., Yung, Y., Carey, S., Barber, R.J., Tennyson, J., Ribas, I., Allard, N., Ballester, G., Sing, D.K., Selsis, F.: Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448, 169–171 (2007)CrossRef ADS
    4.Swain, M., Vasish, G., Tinetti, G.: The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329–331 (2008)CrossRef ADS
    5.Gibson, N.P., Pont, F., Aigrain, S.: A new look at NICMOS transmission spectra of HD189733, GJ 436 and XO-1: No conclusive evidence for molecular signatures. Mon. Not. Royal Astr. Soc. 411, 2199–2213 (2011)CrossRef ADS
    6.Gibson, N.P., Aigrain, S., Roberts, S., et al.: A Gaussian process framework for modelling instrumental systematics: Application to transmission spectroscopy. Mon. Not. Royal Astr. Soc. 422, 753–760 (2012)CrossRef ADS
    7.Waldmann, I. P., Tinetti, G., Deroo, P., Hollins, M. D. J., Yurchenko, S. N., Tennyson, J. Blind extraction of an exoplanetary spectrum through independent component analysis. Astrophys. J. 766:7 (9pp) (2013)
    8.Swain, M., Vasish, G., Tinetti, G., Bouwman, J., Chen, P., Yung, Y., Deming, D., Deroo, P.: Molecular signatures in the near-infrared dayside spectrum of HF189733b. Astrophys. J. 690, L114–L117 (2009)CrossRef ADS
    9.Swain, M., Tinetti, G., Vasish, G., Deroo, P., Griffith, C., Bouwman, J., Chen, P., Yung, Y., Burrows, A., Brown, L.R., Matthews, J., Rowe, J.F., Knuschnig, R., Angerhausen, D.: Water, methane and carbon dioxide present in the dayside spectrum of exoplanet HD209458b. Astrophys. J. 704, 1616–1621 (2009)CrossRef ADS
    10.Madhusudhan, N., Seager, S.: A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009)CrossRef ADS
    11.Moses, J., Visscher, C., Fortney, J., et al.: Disequilibrium Carbon, Oxygen, and Nitrogen Chemistry in the Atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15–37 (2011)CrossRef ADS
    12.Venot, O., Hébrard, E., Agundez, M., et al.: A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43 (2012)CrossRef ADS
    13.Allard, N.F., Allard, F., Hauschildt, P.H., Kielkopf, J.F., Machin, L.: A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and Ka I line profiles. Astron. Astrophys. 411, L473–L476 (2003)CrossRef ADS
    14.Allard, N.F., Spiegelman, F.: Collisional line profiles of rubidium and cesium perturbed by helium and molecular hydrogen. Astron. Astrophys. 452, 351–356 (2006)CrossRef ADS
    15.Tennyson, J., Yurchenko, S.: ExoMol: molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 425, 21 (2012)CrossRef ADS
    16.Goody, R.M., Yung, Y.L.: Atmospheric radiation: theoretical basis. Oxford University Press, London (1989)
    17.Tinetti, G., Encrenaz, T., Coustenis, A.: Spectroscopy of planetary atmospheres in our Galaxy. Astron. Astrophys. Rev. 21, 63 (2013)CrossRef ADS
    18.Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., et al.: Rayleigh scattering in the transit spectrum of HD189733b. Astron. Astrophys. 481, L83–L86 (2008)CrossRef ADS
    19.Désert, J.-M., Vidal-Madjar, A., Lecavelier Des Etangs, A., et al.: TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b. Astron. Astrophys. 492, 585–592 (2008)CrossRef ADS
    20.Spiegel, D.S., Silverio, K., Burrows, A.: Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009)CrossRef ADS
    21.Richardson, I.J., Deming, D., Horning, K., et al.: A spectrum of an extrasolar planet. Nature 445, 892–895 (2007)CrossRef ADS
    22.Medvedev, A.S., JSethunadh, I., Hartogh, P.: From cold to warm gas giants: A three-dimensional atmospheric general circulation modeling. Icarus 225, 228–235 (2013). doi:10.​1016/​j.​icarus.​2013.​03.​028, 2013 CrossRef ADS
    23.Tessenyi, M., Tinetti, G., Savini, G., Pascale, E.: Molecular detectability in exoplanetary emission spectra. Icarus 226, 1654–1672 (2013)CrossRef ADS
    24.Encrenaz, T. Infrared spectroscopy of exoplanets: Observational constraints. 2014. Phil. Trans. Royal Soc. A2014, 20130083, published 24 March 2014 (2014)
    25.Tinetti, G., Beaulieu, J.-P., Henning, T., Meyer, M., Micela, G., Ribas, I., et al.: EChO: Exoplanet Characterization Observatory. Exp. Astron. 34, 311–353 (2012)CrossRef ADS
    26.Herzberg, G. Molecular spectra and molecular structure. Vol 2: Infrared and Raman spectra. Van Nostrand, Reinhold (1945)
    27.Townes, C. H., Schawlow, A. L. Microwave spectroscopy, Dover Publications (1975)
    28.Pugh, L.A., Rao, K.N.: Intensities from Infrared Spectra. In: Molecular Spectroscopy: Modern Research, vol 2, Academic Press (1976)
    29.Rothman, L.S., Gamache, R.R., Barbe, A., et al.: AFGL atmospheric absorption line parameter compilation – 1982 Edition. Appl. Opt 22, 2247–2256 (1983)CrossRef ADS
    30.Sharp, C.M., Burrows, A.: Atomic and molecular opacities for Brown Dwarf and giant planet atmospheres. Astrophys. J. Suppl. Ser. 168, 140–166 (2007)CrossRef ADS
    31.Yurchenko, S.N., Barber, R.J., Tennyson, J.: A variationally computed line list for hot NH3. Mon. Not. R. Astron. Soc. 413, 1828 (2011)CrossRef ADS
    32.Maillard, J.-P. and Miller, S. The molecular ion H3 + in emission in planetary atmospheres, ASP conference “Molecules in the atmosphere of an exoplanet”, Beaulieu, Dieters, Tinetti, edts, Paris, 2008 (2012)
    33.Drossart, P., Maillard, J.-P., Caldwell, J., Kim, S.J., Watson, J.K.G., Majewski, W.A., Tennyson, J., et al.: Detection of H3 + on Jupiter. Nature (ISSN 0028–0836) 340, 539–541 (1989)CrossRef ADS
    34.Geballe, T.R., Jagod, M.-F., Oka, T.: Detection of H3 + infrared emission lines in Saturn. Astrophys J 408, L109–L112 (1993)CrossRef ADS
    35.Trafton, L.M., Geballe, T.R., Miller, S., Tennyson, J., Ballester, G.E.: Detection of H3 + from Uranus. Astrophys J 405, 761–766 (1993)CrossRef ADS
    36.Koskinen, T., Aylward, A., Miller, S.: A stability limit for the atmospheres of giant extrasolar planets. Nature 450, 845–848 (2007)CrossRef ADS
    37.Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N.: A high-accuracy computed water line list. Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006)CrossRef ADS
    38.Neale, L., Miller, S., Tennyson, J.: Spectroscopic Properties of the H3 + Molecule: A New Calculated Line List. Astrophys. J. 464, 516 (1996)CrossRef ADS
    39.Rothman, L.S., et al.: HITEMP. J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)CrossRef ADS
    40.Rothman, L.S., et al.: The HITRAN 2012 molecular spectroscopic database. JQSRT (2013). doi:10.​1016/​j.​jqsrt.​2013.​07.​002 MATH
    41.Tinetti, G., Meadows, V.S., Crisp, D., Fong, W., Fishbein, E., Turnbull, M., Bibring, J.-P.: Detectability of Planetary Characteristics in Disk-Averaged Spectra I: The Earth Model. Astrobiology 6, 34–47 (2006)CrossRef ADS
    42.Tinetti, G., Griffith, C. A., Swain, M. R., Deroo, P., Beaulieu, J. P., Vasisht, G., Kipping, D., Waldmann, I., Tennyson, J., Barber, R. J., Bouwman, J., Allard, N., and Brown, L. R. Exploring extrasolar worlds: from gas giants to terrestrial habitable - planets. Faraday Discussions, 147 (2010)
    43.De Kok, R.J., Stam, D.M.: The influence of forward-scattered light in transmission measurements of (exo) planetary atmospheres. Icarus 221, 517–524 (2012)CrossRef ADS
    44.Karkoschka, E., Tomasko, M.G.: Methane absorption coefficients for the Jovian planets from laboratory, Huygens and HST data. Icarus 205, 674–694 (2010)
    45.Hollis, M.D.J., Tessenyi, M., Tinetti, G.: Tau: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres. Comput. Phys. Commun. 184(10), 2351–2361 (2013)CrossRef ADS
    46.Liou K. N. An introduction to atmospheric radiation, 2nd edn. International geophysics series, vol 84. Academic Press, San Diego. 583pp (2002)
    47.Walkowicz, L.M., Hawley, S.L.: Observations and models of quiescent M-Dwarfs chromospheres. Astron. Inst. Of Phys Conf. Series 1094, 696–699 (2009)ADS
    48.Barstow, J.K., Aigrain, S., Irwin, P.G.J., Bowles, N., Fletcher, L.N., Lee, J.-M.: On the potential of the EChO mission to characterise gas giant atmospheres. Mon. Not. R. Astron. Soc. 430(2013), 1188–1207 (2013)CrossRef ADS
    49.Pont, F., Knutson, H., Gilliland, R.L., et al.: Detection of an atmospheric haze on an extrasolar planet: the 0.55–1.05 mm transmission spectrum of HD189733b with the Hubble Space Telescope. Mon. Not. Royal Astron Soc. 385, 109–118 (2008)CrossRef ADS
    50.Rothman, L.S., et al.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)CrossRef ADS
    51.Venot, O., Agundez, M., Selsis, F., Tessenyi, M., Iro, N.: The atmospheric chemistry of the warm Neptune GJ3470b. Astron. Astrophys. 562, A 51 (2014)CrossRef ADS
  • 作者单位:T. Encrenaz (1)
    G. Tinetti (2)
    M. Tessenyi (2)
    P. Drossart (1)
    P. Hartogh (3)
    A. Coustenis (1)

    1. LESIA, Observatoire de Paris, CNRS, UPMC, UDD, Paris, France
    2. Department of Physics and Astronomy, University College London, London, UK
    3. Max-Planck Institut for Solar System Research, Göttingen, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9508
文摘
The study of exoplanets is an exploding field in astronomy. Recent discoveries have made possible the development of a new research field, the spectroscopic characterization of the exoplanetary atmospheres, using both primary and eclipse transits. A dedicated space mission will make possible the characterization of many classes of exoplanets, from the hot Jupiters to the temperate super-Earths. In this paper, we discuss how the spectral range and the spectral resolving power can be optimized for identifying a maximum number of candidate atmospheric species. Spectral modeling shows that the simultaneous observation of the whole spectral range, from 0.55 to 16 μm is ideal for (1) capturing all types of planets at different temperatures, (2) detecting the variety of chemical atmospheric compounds with some redundancy, and (3) enabling an optimal retrieval of the chemical abundances and thermal profile. Limiting the spectral interval to 11 μm would make the retrieval more difficult in the case of cold exoplanets. In the visible range, the extension down to 0.4 s at different temperatures, (2) detecting the variety of chemical atmospheric compounds with some redundancy, and (3) enabling an optimal retrieval of the chemical abundances andst candidate molecules. Keywords Exoplanets Infrared spectroscopy Molecular spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700