Elastomer composites based on filler with negative thermal expansion coefficient in sealing application
详细信息    查看全文
  • 作者:Sergey N. Shubin ; Alexander B. Freidin ; Anton G. Akulichev
  • 关键词:Elastomer ; Negative thermal expansion ; Composites ; Seal
  • 刊名:Archive of Applied Mechanics (Ingenieur Archiv)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:86
  • 期:1-2
  • 页码:351-360
  • 全文大小:843 KB
  • 参考文献:1.Gautier, D.L., et al.: Assessment of undiscovered oil and gas in the Arctic. Science 324, 1175–1179 (2008)CrossRef
    2.Bhowmick, A.K. (ed.): Current Topics in Elastomers Research. CRC Press, Boca Raton (2008)
    3.Miller, W., Smith, C.W., Mackenzie, D.S., Evans, K.E.: Negative thermal expansion: a review. J. Mater. Sci. 44, 5441–5451 (2009)CrossRef
    4.Takenaka, K.: Negative thermal expansion materials: technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 13, 1–11 (2012)CrossRef
    5.Lind, C.: Two decades of negative thermal expansion research: Where do we stand? Materials 5, 1125–1154 (2012)CrossRef
    6.Drymiotis, F.R., Ledbetter, H., Betts, J.B., Kimura, T., Lashley, J.C., Migliori, A., Ramirez, A.P., Kowach, G.R., Van Duijn, J.: Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). Phys. Rev. Lett. 93(2), 025502 (2004)CrossRef
    7.Mary, T.A., Evans, J.S.O., Vogt, T., Sleight, A.W.: Negative thermal expansion from 0.3 to 1050 Kelvin in \(\text{ ZrW }_2\text{ O }_8\) . Science 272, 90–92 (1996)CrossRef
    8.Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRef MATH
    9.Sternberg, E., Turteltaub, M.J.: Compression of an elastic roller between two rigid plates. In: Sedov, L.I., et al. (eds.) Continuum Mechanics and Related Problems of Analysis. Muskhelishvili Anniversary Volume, pp. 495–515. Nauka Publishing House, Moscow (1972)
    10.Levin, V.: On the thermal expansion coefficients of heterogeneous materials. Proc. Acad. Sci. USSR Mech. Solids 1, 88–93 (1967)
    11.Sevostianov, I.: On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech. Mater. 45, 20–33 (2011)CrossRef
    12.Kanaun, S.K., Levin, V.M.: Self-Consistent Methods for Composites. V. 1: Static Problems. Springer, Dordrecht (2007)
    13.Kachanov, M., Sevostianov, I.L. (eds.): Effective Properties of Heterogeneous Materials. Springer, Berlin (2013)
    14.Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metall. 21, 571–574 (1973)CrossRef
    15.Hashin, Z., Shtricman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)CrossRef MathSciNet MATH
    16.Yamashina, N., Isobe, T., Ando, S.: Low thermal expansion composites prepared from polyimide and \(\text{ ZrW }_2\text{ O }_8\) particles with negative thermal expansion. J. Photopolym. Sci. Technol. 25, 385–388 (2012)CrossRef
    17.Kozy, L.C., Tahir, M.N., Lind, C., Tremel, W.: Particle size and morphology control of the negative thermal expansion material cubic zirconium tungstate. J. Mater. Chem. 19, 2760–2765 (2009)CrossRef
  • 作者单位:Sergey N. Shubin (1) (2)
    Alexander B. Freidin (1) (3) (4)
    Anton G. Akulichev (2)

    1. Institute for Problems in Mechanical Engineering of Russian Academy of Science, Saint-Petersburg, Russia
    2. FMC Technologies, Saint-Petersburg, Russia
    3. Saint-Petersburg Polytechnic University, Saint-Petersburg, Russia
    4. Saint-Petersburg State University, Saint-Petersburg, Russia
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics
    Complexity
    Fluids
    Thermodynamics
    Systems and Information Theory in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0681
文摘
We consider elastomer composites with fillers made of a material that exhibits negative coefficient of thermal expansion (CTE). Such fillers provide an opportunity to reduce the thermal shrinkage of the composite in cooling. It is especially relevant in sealing applications for structures operated at low temperatures. It is known that CTE of rubber is at least an order of magnitude higher than that of steel. Due to this fact, an elastomer seal compressed in its groove may lose interference with the mating steel surface upon temperature drop and, thus, form a leak path for the contained fluids like hydrocarbons. In the present paper we start with estimates of the contact pressure drop in a typical O-ring rubber seal caused by cooling. Then we investigate how the volume fraction and the shape of filler particles affect thermo-elastic properties and the sealing performance of the composite. We demonstrate that the contact pressure drop due to freezing down to \({-}60\,^{\circ }\hbox {C}\) can be reduced twice in the case of spherical inclusions, and the effect can be significantly enhanced by changing the shape of the filler particles. Finally, having in mind the strain fracture criterion, we estimate local strains at the interface between elastomer and filler considering various shapes of the filler particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700