Characterisation of blast loading in complex, confined geometries using quarter symmetry experimental methods
详细信息    查看全文
文摘
Explosions in confined spaces lead to complicated patterns of shock wave reflection and interactions which are best investigated by use of experimental tests or numerical simulations. This paper describes the design and outcome of a series of experiments using a test cell to measure the pressures experienced when structures were placed inside to alter the propagation of shock waves, utilising quarter symmetry to reduce the size of the required test cell and charge. An 80 g charge of PE4 (a conventional RDX-based plastic explosive) was placed at half height in one corner of the test cell, which represents the centre of a rectangular enclosure when symmetry is taken into consideration. Steel cylinders and rectangular baffles were placed within the test cell at various locations. Good reproducibility was found between repeated tests in three different arrangements, in terms of both the recorded pressure data and the calculated cumulative impulse. The presence of baffles within the test cell made a small difference to the pressures and cumulative impulse experienced compared to tests with no baffles present; however, the number and spacing of baffles was seen to make minimal difference to the experienced pressures and no noticeable difference to the cumulative impulse history. The paper presents useful experimental data that may be used for three-dimensional code validation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700