Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model
详细信息    查看全文
  • 作者:Yan-Jun Chen ; Ping-Yang Wang ; Zhen-Hua Liu
  • 刊名:Heat and Mass Transfer
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:52
  • 期:11
  • 页码:2471-2484
  • 全文大小:1,198 KB
  • 刊物类别:Engineering
  • 刊物主题:Engineering Thermodynamics and Transport Phenomena
    Industrial Chemistry and Chemical Engineering
    Thermodynamics
    Physics and Applied Physics in Engineering
    Theoretical and Applied Mechanics
    Engineering Fluid Dynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1181
  • 卷排序:52
文摘
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700