Explicitly correlated interaction potential energy profile of imidazole + CO2 complex
详细信息    查看全文
  • 作者:S. Dalbouha ; M. Prakash ; V. Timón ; N. Komiha ; M. Hochlaf…
  • 关键词:ZIFs ; CO2 capture ; Ab initio ; Imidazoles
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:134
  • 期:5
  • 全文大小:1,192 KB
  • 参考文献:1.Eddaoudi M, Li H, O’Keeffe M, Yaghi OM (1999) Nature 402:276–279CrossRef
    2.Lu AH, Dai S (eds) (2014) Porous materials for carbon dioxide capture. Springer, Berlin
    3.Liu Y, Kravtsov VC, Larsen R, Eddaoudi M (2006) Chem Commun 14:1488–1490CrossRef
    4.Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Proc Natl Acad Sci USA 103:10186–10191CrossRef
    5.Cui P, Ma Y-G, Zhao H-H, Li B, Cheng J-R, Li P, Balbuena PB, Zhou H-C (2012) J Am Chem Soc 134:18892–18895CrossRef
    6.Bogle RG, Whitley GS, Soo SC, Johnstone AP, Vallance P (1994) Br J Pharmacol 111:1257–1261CrossRef
    7.Timón V, Senent ML, Hochlaf M (submitted)
    8.Adler TB, Manby FR, Werner H-J (2009) J Chem Phys 130:054106CrossRef
    9.Rauhut G, Knizia G, Werner H-J (2009) J Chem Phys 130:054105CrossRef
    10.Al Mogren MM, Denis-Alpizar O, Abdallah DB, Stoecklin T, Halvick P, Senent M-L, Hochlaf M (2014) J Chem Phys 141:044308CrossRef
    11.Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRef
    12.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford
    13.Werner H-J, Knowles PJ et al (2012) MOLPRO, version 2012.1, a package of ab initio programs. http://​www.​molpro.​net
    14.Dunning TH Jr (1989) J Chem Phys 90:1007CrossRef
    15.Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371CrossRef
    16.Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRef
    17.Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRef
    18.Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918CrossRef
    19.Hampel C, Peterson K, Werner H-J (1992) Chem Phys Lett 190:1–12CrossRef
    20.Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRef
    21.Becke AD (1989) Phys Rev A 38:3098–3100CrossRef
    22.Lee C, Yang W, Parr RG (1989) Phys Rev B 37:785–789CrossRef
    23.Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57CrossRef
    24.Adler TB, Werner H-J (2009) J Chem Phys 130:241101CrossRef
    25.Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104CrossRef
    26.Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106CrossRef
    27.Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102CrossRef
    28.Yousaf KE, Peterson KA (2009) J Chem Phys 129:184108CrossRef
    29.Boys F, Bernardi F (1970) Mol Phys 19:553–566CrossRef
    30.Prakash M, Mathivon K, Benoit DM, Chambaud G, Hochlaf M (2014) Phys Chem Chem Phys 16:12503–12509CrossRef
    31.Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRef
    32.Zerner MC, Lowe GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589–599CrossRef
    33. http://​webbook.​nist.​gov/​chemistry/​
    34.Brites B, Hochlaf M (2009) J Phys Chem A 113:11107–11111CrossRef
    35.Lauvergnat D, Senent ML, Jutier L, Hochlaf M (2011) J Chem Phys 135:074301CrossRef
    36.Yazidi O, Hochlaf M (2013) Phys Chem Chem Phys 15:10158–10166CrossRef
    37.Yaghlane SB, Cotton CE, Francisco JS, Linguerri R, Hochlaf M (2013) J Chem Phys 139:174313CrossRef
    38.Ajili Y, Hammami K, Jaidane N-E, Lanza M, Kalugina YN, Lique F, Hochlaf M (2013) Phys Chem Chem Phys 15:10062–10070CrossRef
    39.Yaghlane SB, Jaidane N-E, Cotton CE, Francisco JS, Al Mogren MM, Linguerri R, Hochlaf M (2014) J Chem Phys 140:244309CrossRef
    40.Kalugina YN, Buryak I, Ajili Y, Vigasin Y, Jaidane N-E, Hochlaf M (2014) J Chem Phys 140:234310CrossRef
    41.Mathivon K, Linguerri R, Hochlaf MJ (2013) J Chem Phys 139:164306CrossRef
  • 作者单位:S. Dalbouha (1) (3)
    M. Prakash (2)
    V. Timón (1)
    N. Komiha (3)
    M. Hochlaf (2)
    M. L. Senent (1)

    1. Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006, Madrid, Spain
    3. LS3ME-Equipe de Chimie Théorique et Modélisation, Faculté des Sciences, Université Mohamed V, 4 Avenue Ibn Batouta, Rabat, B.P 1014 RP, Rabat, Morocco
    2. Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 boulevard Descartes, 77454, Marne-La-Vallée, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
In this paper, the interaction potential energy profiles corresponding to the imidazole + CO2 system are determined using explicitly correlated coupled-cluster methods (CCSD(T)-F12) in combination with the VTZ-F12 basis set. The imidazole + CO2 van der Waals complex, which represents a relevant system for the study of the CO2 capture and storage in new materials, such as the zeolitic imidazolate frameworks (ZIFs), shows three different equilibrium geometries, two planar ones of Cs symmetry and one C1 structure. Their geometrical parameters and harmonic frequencies, as well as the one-dimensional potential energy profiles for the complex formation processes, are provided. Intermolecular bindings occur through the imidazole nitrogen atoms. The interaction energy depends strongly on the two molecule relative orientations. The full-dimensional intermolecular potentials show a significant anisotropy. The implications for the macromolecular simulations of the CO2 capture and sequestration in ZIFs are discussed. Preliminary tests of various theoretical methods (DFT and ab initio) have been performed to search for a methodology suitable for further application in large systems such as the substituted imidazoles (Zn-imidazoles or R-imidazoles). In these tests, the results obtained using CCSD(T)-F12 are employed as benchmarks. Suddenly, the MP2 theory competes with the explicitly correlated methods. MP2 theory corrects the deviation of the density functional theory calculations in the long-range region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700