Modeling of shock wave initiation of an explosion of individual bubbles in liquid hydrocarbon fuels
详细信息    查看全文
  • 作者:P. A. Fomin (1) (2)
  • 关键词:bubble mixture ; explosion limit ; explosion safety ; mathematical modeling
  • 刊名:Combustion, Explosion, and Shock Waves
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:50
  • 期:6
  • 页码:689-703
  • 全文大小:996 KB
  • 参考文献:1. J. A. Howell, S. W. Leslie, and J. Kenneth, 鈥淥xidation of Cyclohexane,鈥?GB Patent No. 1025752 (1966).
    2. J. M. Alexander, 鈥淕as Phase Ignition in Liquid Phase Air Oxidation Process-a Recipe for Disaster,鈥?Process Saf. Environ Prot. 68B(1), 17鈥?3 (1990).
    3. G. Veser and L. D. Schmidt, 鈥淚gnition and Extinction in the Catalytic Oxidation of Hydrocarbons over Platinum,鈥?AIChE J. 42, 1077鈥?087 (1996). CrossRef
    4. J. R. Chen and C. M. Lee, 鈥淪afe Acetoxylation of Propylene: the Role of Oxygen,鈥?Process Saf. Progress 24(4), 280鈥?86 (2005). CrossRef
    5. D. A. Crowl and J. F. Louvar, / Chemical Process Safety: Fundamentals with Applications (Prentice Hall PTP, Upper Saddle River, New Jersey, 2002).
    6. K. Mitropetros, P. A. Fomin, J. Steinbach, B. Plewinsky, and H. Hieronymus, 鈥淓xplosion of Oxygen Bubbles in Cyclohexane,鈥?Chem. Eng. J. 97(2鈥?), 151鈥?60 (2004). CrossRef
    7. P. A. Fomin, K. P. Mitropetros, and H. Hieronymus, 鈥淓xplosion Limits of a Single Oxygen Containing Bubble in Organic Solvent with High Saturated Vapor Pressure,鈥?in / Proc. of 11th Int. Symp. of Loss Prevention and Safety Promotion in the Process Industries (Praque, Chech Republic, 2004), pp. 2179鈥?185.
    8. A. V. Trotsyuk and P. A. Fomin, 鈥淢odel of Bubble Detonation,鈥?Fiz. Goreniya Vzryva 28(4), 129鈥?36 (1992) [Combust., Expl., Shock Waves 28 (4), 439鈥?45 (1992)].
    9. V. K. Kedrinskii, P. A. Fomin, and S. P. Taratuta, 鈥淒ynamics of a Single Bubble in a Liquid in the Presence of Chemical Reactions and Interphase Heat and Mass Exchange,鈥?Prikl. Mekh. Tekh. Fiz. 40(2), 119鈥?27 (1999) [Appl. Mech. Tech. Phys. 40 (2), 292鈥?99 (1999)].
    10. P. A. Fomin, K. Mitropetros, and H. Hieronymus, 鈥淢odeling of Detonation Processes in Chemically Active Bubble Systems at Normal and Elevated Initial Pressures,鈥?J. Loss Prevent. Process Indust. 16(4), 323鈥?31 (2003). CrossRef
    11. P. A. Fomin, K. Mitropetros, and H. Hieronymus, 鈥淪imulation of the Explosion Behavior of Bubbles in Organic Solvents,鈥?in / 19th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) (Hakone, Japan, 2003), CD-ROM, ISBN 4-99011744-1-0 C3053.
    12. P. A. Fomin, K. Mitropetros, and H. Hieronymus, 鈥淭heoretical Analysis of Shock Induced Bubble Explosion with Long Ignition Delay,鈥?in / Proc. of European Combustion Meeting (ECM 2005) (Belgium, Louvainla-Neuve, 2005), CD-ROM.
    13. YU. A. Nikolaev and P. A. Fomin, 鈥淎nalysis of Equilibrium Flows of Chemically Reacting Gases,鈥?Fiz. Goreniya Vzryva 18(1), 66鈥?2 (1982) [Combust., Expl., Shock Waves 18 (1), 53鈥?8 (1982)].
    14. Yu. A. Nikolaev and P. A. Fomin, 鈥淎pproximate Equation of Kinetics in Heterogeneous Systems of the Gas-Condensed-Phase Type,鈥?Fiz. Goreniya Vzryva 19(6), 49鈥?8 (1983) [Combust., Expl., ShockWaves 19 (6), 737鈥?45 (1983)].
    15. Yu. A. Nikolaev and D. V. Zak, 鈥淎greement of Models of Chemical Reactions in Gases with the Second Law of Thermodynamics,鈥?Fiz. Goreniya Vzryva 24(4), 87鈥?0 (1988) [Combust., Expl., Shock Waves 24 (4), 461鈥?63 (1988)].
    16. P. A. Fomin and A. V. Trotsyuk, 鈥淎n Approximate Calculation of the Isentrope of a Gas in Chemical Equilibrium,鈥?Fiz. Goreniya Vzryva 31(4), 59鈥?2 (1995) [Combust., Expl., Shock Waves 31 (4), 455鈥?58 (1995)].
    17. K. Mitropetros, P. A. Fomin, and H. Hieronymus, 鈥淪afety Aspects of a Bubbly Medium inside a Chemical Reactor,鈥?Chem. Engin. J. 107, 27鈥?2 (2005). CrossRef
    18. Ya. B. Zel鈥檇ovich and Yu. P. Raizer, / Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1967).
    19. A. V. Pinaev and A. I. Sychev, 鈥淪tructure and Properties of Detonation in a Liquid-Gas Bubble System,鈥?Fiz. Goreniya Vzryva 22(3) 109鈥?18 (1986) [Combust., Expl., Shock Waves 22 (3), 360鈥?67 (1986)].
    20. V. K. Kedrinskii, / Hydrodynamics of Explosion. Experiment and Models (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000; Springer, New York, 2010).
    21. K. Mitropetros, / Shock Induced Bubble Explosions in Liquid Cyclohexane (BAM-Dissertationsreihe, Berlin, 2005).
    22. / Thermodynamic Properties of Individual Substances, Ed. by V. P. Glushko (Izd. Akad. Nauk SSSR, Moscow, 1962), Vol. 2 [in Russian].
    23. / Thermodynamic Constants of Substances, Ed. by V. P. Glushko (VINITI, Moscow, 1965鈥?982) [in Russian].
    24. / The Janaf Thermochemical Tables, Ed. by D. R. Stull (US Department of Commerce, Washington, DC, 1965).
    25. D. R. Stull and H. Prohet, / The Janaf Thermochemical Tables (NSRDS-NBS-37, Washington, DC, 1971).
    26. M. P. Vukalovich, V. A. Kirillin, S. A. Remizov, V. S. Siletskii, and V. N. Timofeev, / Thermodynamic Properties of Gases (Mashgiz, Moscow, 1953) [in Russian].
    27. N. B. Vargaftik, / Handbook on Thermophysical Properties of Gases and Liquids (Fizmatgiz, Moscow, 1963) [in Russian].
    28. N. B. Vargaftic, / Tables on the Thermophysical Properties of Liquids and Gases: In Normal and Dissociated States (John Wiley and Sons, New York, 1975).
    29. W. Bierwerth, / Tabellenbuch Chemietechnik: Daten, Formeln, Normen, Vergleichende Betrachtungen, Lernmaterialien (Europa-Lehrmittel, 2001).
    30. E. S. Shchetinkov, / Physics of Gas Combustion (Fizmatgiz, Moscow, 1966) [in Russian].
    31. Yu. A. Nikolaev, A. A. Vasil鈥檈v, and V. Yu. Ul鈥檡anitskii, 鈥淕as Detonation and its Application in Engineering and Technologies (Review),鈥?Fiz. Goreniya Vzryva 39(4), 22鈥?4 (2003) [Combust., Expl., Shock Waves 39 (4), 382鈥?10 (2003)].
    32. P. A. Fomin, A. V. Trotsyuk, A. A. Vasilev, K. Mitropetros, H. Hieronymus, and D. Roekaerts, 鈥淢odel of Chemical Reaction Kinetics for Calculating Detonation Processes in Gas and Heterogeneous Mixtures Containing Hydrogen Peroxide,鈥?Combust. Sci. Technol. 178, 895鈥?19 (2006). CrossRef
    33. P. A. Fomin, K. Mitropetros, and H. Hieronymus, 鈥淎pproximate Model of Chemical Equilibrium in Heterogeneous Gas-Particles Mixtures,鈥?in / Fire and Explosion Hazards: Proc. of the 4th Int. Seminar, Eds. by D. Bradley, D. Drysdale, and V. Molkov (University of Ulster, N. Ireland, UK, 2004), pp. 219鈥?28.
    34. P. A. Fomin and J.-R. Chen, 鈥淓ffect of Chemically Inert Particles on Thermodynamic Characteristics and Detonation of a Combustible Gas,鈥?Combust. Sci. Technol. 181(8), 1038鈥?064 (2009). CrossRef
    35. P. A. Fomin and J.-R. Chen, 鈥淓ffect of Chemically Inert Particles on Parameters and Suppression of Detonation in Gases,鈥?Fiz. Goreniya Vzryva 45(3), 77鈥?8 (2009) [Combust., Expl., Shock Waves 45 (3), 303鈥?13 (2009)].
    36. / Tables of Physical Quantities, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].
    37. / CRC Handbook of Chemistry and Physics, Ed. by D. R. Lide (CRC Press, Boca Raton, 1994).
    38. / Korea Thermophysical Properties Databank (2004); http://www.cheric.org/research/kdb/hcprop/showprop.php?cmpid=470.
    39. W. Apel, K. Mitropetros, and H. Hieronymus, 鈥淓xperimentelle Bestimmung von Explosiongrenzen von Cyclohexan in Reinem Sauerstoff,鈥?Chem.-Ing.-Tech. 77(1/2), 1鈥? (2005).
    40. D. A. Crowl and J. F. Louvar, / Chemical Process Safety: Fundamentals with Applications (Prentice-Hall PTR, Upper Saddle River, NJ, 2002).
    41. M. A. Lavrent鈥檈v and B. V. Shabat, / Problems of Hydrodynamics and Their Mathematical Models (Nauka, Moscow, 1973) [in Russian].
    42. D. A. Frank-Kamenetskii, / Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987).
    43. A. I. Sychev and A. V. Pinaev, 鈥淪elf-Sustaining Detonation in Liquids with Bubbles of Explosive Gas,鈥?Prikl. Mekh. Tekh. Fiz. 27(1), 133鈥?38 (1986) [Appl. Mech. Tech. Phys. 27 (1), 119鈥?23 (1986)].
    44. A. V. Pinaev and A. I. Sychev, 鈥淒etection and Study of Self-Sustaining Detonation Regimes in Systems Consisting of a Liquid Fuel and Oxidizer Bubbles,鈥?Dokl. Akad. Nauk SSSR 290(3), 611鈥?15 (1986).
  • 作者单位:P. A. Fomin (1) (2)

    1. Lavrent鈥檈v Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
    2. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
  • ISSN:1573-8345
文摘
A physicomathematical model of shock wave initiation of an explosion of oxygen-containing bubbles in liquid hydrocarbon fuels is developed. The model is used to calculate an explosion of bubbles in which the initial concentration of fuel vapors is outside the flammability limits. A principal possibility of condensation of fuel vapors during compression of a fuel-rich bubble located in liquid cyclohexane with a comparatively high initial temperature is demonstrated. Condensation leads to a decrease in the fuel concentration in the gas lower than the fuel-rich flammability limit. As a result, an explosion of an initially non-combustible bubble becomes possible. The condensation rate is estimated. It is found to be sufficiently high to change the chemical composition of the gas during the period of the first oscillation of the bubble. The explosion limits of the bubble are calculated as functions of the initial pressure, temperature, and amplitude of the shock wave. If condensation is taken into account, the explosion limits are expanded. Bubble liquids (2-ethylhexanol and isopropyl benzene) where the fuel vapor concentration is initially lower than the fuel-lean flammability limit are considered. It is shown that liquid evaporation induced by mechanical mixing of the phases can shift the chemical composition of the gas inward the flammability region, resulting in a bubble explosion with a corresponding increase in gas temperature. Calculated and experimental results are found to be in good agreement. Explosive processes in bubble media containing a liquid monopropellant are considered at the qualitative level for the first time. An assumption is put forward about a possibility of multiple explosions of an individual bubble loaded by a series of shock waves and subjected to multiple transitions of the detonation wave over the liquid with distributed bubbles, which may be used for generating a series of powerful acoustic signals in the ambient space.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700