Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae)
详细信息    查看全文
  • 作者:Wesley T. Beaulieu (1)
    Daniel G. Panaccione (2)
    Corey S. Hazekamp (2)
    Michelle C. Mckee (1)
    Katy L. Ryan (2)
    Keith Clay (1)
  • 关键词:Ergoline alkaloids ; Fungal endophyte ; Ipomoea ; Symbiosis ; Periglandula ; Defensive mutualism
  • 刊名:Journal of Chemical Ecology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:39
  • 期:7
  • 页码:919-930
  • 全文大小:481KB
  • 参考文献:1. Ahimsa-Muller MA, Markert A, Hellwig S, Knoop V, Steiner U, Drewke C, Leistner E (2007) Clavicipitaceous fungi associated with ergoline alkaloid-containing Convolvulaceae. J Nat Prod 70:1955鈥?960 CrossRef
    2. Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009a) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on / Pratylenchus scribneri. Phytopathology 99:1336鈥?345 CrossRef
    3. Bacetty AA, Snook ME, Glenn AE, Noe JP, Nagabhyru P, Bacon CW (2009b) Chemotaxis disruption in / Pratylenchus scribneri by tall fescue root extracts and alkaloids. J Chem Ecol 35:844鈥?50 CrossRef
    4. Bull JJ, Molineux IJ, Rice WR (1991) Selection of benevolence in a host-parasite system. Evolution 45:875鈥?82 CrossRef
    5. Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm ( / Spodoptera frugiperda). J Chem Ecol 15:169鈥?82 CrossRef
    6. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99鈥揝127 CrossRef
    7. Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A 102:12465鈥?2470 CrossRef
    8. Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, Pfister JA, Clay K, Marcolongo-Pereira C (2013) Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order Chaetothyriales in the host / Ipomoea carnea. J Agric Food Chem 61:3797鈥?803 CrossRef
    9. Coyle CM, Cheng JZ, O鈥檆onnor SE, Panaccione DG (2010) An old yellow enzyme gene controls the branch point between / Aspergillus fumigatus and / Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898鈥?903 CrossRef
    10. Devall MS, Thien LB (1989) Factors influencing the reproductive success of / Ipomoea pes-caprae (Convolvulaceae) around the Gulf of Mexico. Am J Bot 76:1821鈥?831 CrossRef
    11. Ehrlich PR, Raven PH (1964) Butterflied and plants鈥攁 study in coevolution. Evolution 18:586鈥?08 CrossRef
    12. Eich E (2008) Tryptophan-derived alkaloids. Solanaceae and Convolvulaceae: Secondary metabolites: Biosynthesis, chemotaxonomy, biological and economic significance. Springer, Berlin CrossRef
    13. Eich E, Eichberg D, Muller WEG (1984) Clavines鈥攏ew antibiotics with cytostatic activity. Biochem Pharmacol 33:523鈥?26 CrossRef
    14. Ewald PW (1987) Transmission modes and the evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci 503:295鈥?06 CrossRef
    15. Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347鈥?56 CrossRef
    16. Flieger M, Sedmera P, Vokoun J, Ricicova A, Rehacek Z (1982) Separation of four isomers of lysergic-acid-alpha-hydroxyethylamide by liquid-chromotagrophy and their spectroscopic identification. J Chromatogr 236:453鈥?59 CrossRef
    17. Fortier GM, Bard N, Jansen M, Clay K (2000) Effects of tall fescue endophyte infection and population density on growth and reproduction in prairie voles. J Wildl Manag 64:122鈥?28 CrossRef
    18. Fox J, Weisberg S (2011) An R Companion to applied regression. Sage, Thousand Oaks
    19. Henrich W, Surbek D, Kainer F, Grottke O, Hopp H, Kiesewetter H, Koscielny J, Maul H, Schlembach D, Von Tempelhoff GF, Rath W (2008) Diagnosis and treatment of peripartum bleeding. J Perinat Med 36:467鈥?78 CrossRef
    20. Herre EA (1993) Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442鈥?445 CrossRef
    21. Hofmann A (2009) LSD My problem child: Reflections on sacred drugs, mysticism and science. MAPS, Sarasota
    22. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:1841鈥?851 CrossRef
    23. Jousselin E, Desdevises Y, Coeur D鈥橝cier A (2009) Fine-scale cospeciation between / Brachycaudus and / Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc R Soc B 276:187鈥?96 CrossRef
    24. Keeler KH (1980) Extrafloral Nectaries of / Ipomoea leptophylla (Convolvulaceae). Am J Bot 67:216鈥?22 CrossRef
    25. Keeler KH (1991) Survivorship and recruitment in a long-lived prairie perennial, / Ipomoea leptophylla (Convolvulaceae). Am Midl Nat 126:44鈥?0 CrossRef
    26. Koh S, Hik DS (2007) Herbivory mediates grass-endophyte relationships. Ecology 88:2752鈥?757 CrossRef
    27. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355鈥?60 CrossRef
    28. Kucht S, Gro脽 J, Hussein Y, Grothe T, Keller U, Basar S, K枚nig WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of / Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619鈥?25 CrossRef
    29. Levin DA (1976) Chemical defenses of plants to pathogens and herbivores. Annu Rev Ecol Syst 7:121鈥?59 CrossRef
    30. Lorenz N, Haarmann T, Pazoutova S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822鈥?832 CrossRef
    31. Mabberley DJ (1987) The plant book. Cambridge University Press, Cambridge
    32. Miller RE, Rausher MD, Manos PS (1999) Phylogenetic systematics of / Ipomoea (Convolvulaceae) based on ITS and / waxy sequences. Syst Bot 24:209鈥?27 CrossRef
    33. Mockaitis JM, Kivilaan A, Schulze A (1973) Studies of the loci of indole alkaloid biosynthesis and alkaloid translocation in / Ipomoea violacea plants. Biochem Physiol Pflanz (BPP) 164:248鈥?57
    34. Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9鈥?7 CrossRef
    35. Panaccione DG (2010) Ergot Alkaloids. In: Hofrichter M (ed) Mycota: Industrial Applications, vol 10, 2nd edn. Springer-Verlag Berlin, Berlin, pp 195鈥?14
    36. Panaccione DG, Tapper BA, Lane GA, Davies E, Fraser K (2003) Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. J Agric Food Chem 51:6429鈥?437 CrossRef
    37. Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006a) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass ( / Lolium perenne). J Agric Food Chem 54:4582鈥?587 CrossRef
    38. Panaccione DG, Kotcon JB, Schardl CL, Johnson RD, Morton JB (2006b) Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, / Pratylenchus scribneri, on perennial ryegrass. Nematology 8:583鈥?90 CrossRef
    39. Panaccione DG, Ryan KL, Schardl CL, Florea S (2012) Analysis and modification of ergot alkaloid profiles in fungi. Methods Enzymol 515:267鈥?90 CrossRef
    40. Panaccione DG, Beaulieu WT, Cook D (2013) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol. doi:10.1111/1365-2435.12076
    41. Plowman TC, Leuchtmann A, Blaney C, Clay K (1990) Significance of the fungus / Balansia cyperi infecting medicinal species of / Cyperus (Cyperaceae) from Amazonia. Econ Bot 44:452鈥?62 CrossRef
    42. Potter DA, Stokes JT, Redmond CT, Schardl CL, Panaccione DG (2008) Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol Exp Appl 126:138鈥?47 CrossRef
    43. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    44. Reyes E, Canto A, Rodriguez R (2009) / Megacerus species (Coleoptera: Bruchidae) and their host plants in Yucatan. Rev Mex Biodivers 80:875鈥?78
    45. Rhoades DF (1979) Evolution of plant defenses against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary metabolites. Academic, New York, pp 1鈥?5
    46. Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42鈥?1 CrossRef
    47. Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18鈥?5 CrossRef
    48. Ryan KL, Moore CT, Panaccione DG (2013) Partial reconstruction of the ergot alkaloid pathway by heterologous gene expression in / Aspergillus nidulans. Toxins 5:445鈥?55 CrossRef
    49. Schardl CL (2010) The epichloae, symbionts of the grass subfamily pooidae. Ann Mo Bot Gard 97:646鈥?65 CrossRef
    50. Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR (1997) Coevolution by common descent of fungal symbionts ( / Epichlo毛 spp.) and grass hosts. Mol Biol Evol 14:133鈥?43 CrossRef
    51. Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R (2008) A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst Biol 57:483鈥?98 CrossRef
    52. Schardl C, Scott B, Florea S, Zhang D (2009) / Epichlo毛 endophytes: Clavicipitaceous symbionts of grasses. In: Deising H (ed) Plant relationships, 2nd edn. Springer, Berlin, pp 275鈥?06
    53. Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331鈥?44 CrossRef
    54. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O鈥橲ullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, G眉ldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323 CrossRef
    55. Schultes RE (1969) Hallucinogens of plant origin. Science 163:245鈥?54 CrossRef
    56. Spiering MJ, Lane GA, Christensen MJ, Schmid J (2005) Distribution of the fungal endophyte / Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in / Lolium perenne plants. Phytochemistry 66:195鈥?02 CrossRef
    57. Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) / Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133鈥?145 CrossRef
    58. Tofern B, Kaloga M, Witte L, Hartmann T, Eich E (1999) Phytochemistry and chemotaxonomy of the Convolvulaceae part 8 - Occurrence of loline alkaloids in / Argyreia mollis (Convolvulaceae). Phytochemistry 51:1177鈥?180 CrossRef
    59. Vanheeswijck R, McDonald G (1992) / Acremonium endophytes in perennial ryegrass and other pasture grasses in Australia and New Zealand. Aust J Agric Res 43:1683鈥?709 CrossRef
    60. Wallwey C, Li SM (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496鈥?10 CrossRef
    61. White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (2003) Historical perspectives: human interactions with clavicipitalean fungi. In: White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts. Marcel Dekker, New York, NY, pp 1鈥?5
    62. White JF, Torres MS (2009) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton CrossRef
    63. Wilson DE (1977) Ecological observations on the tropical strand plants / Ipomoea pes-caprae (L.) R. Br. (Convolvulaceae) / Canavalia maritima (Aubl.) Thou. (Fabaceae). Brenesia 10:31鈥?2
    64. Zhang XX, Li CJ, Nan ZB, Matthew C (2012) / Neotyphodium endophyte increases / Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70鈥?8 CrossRef
  • 作者单位:Wesley T. Beaulieu (1)
    Daniel G. Panaccione (2)
    Corey S. Hazekamp (2)
    Michelle C. Mckee (1)
    Katy L. Ryan (2)
    Keith Clay (1)

    1. Department of Biology, Indiana University, Bloomington, IN, USA
    2. Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
文摘
Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds鈥攗p to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700