ESWT and alendronate sodium demonstrate equal protective effects in osteoarthritis of the knee
详细信息    查看全文
  • 作者:Ching-Jen Wang ; Wen-Yi Chou ; Shan-Ling Hsu ; Chien-Yiu Huang ; Jai-Hong Cheng
  • 关键词:Extracorporeal shock wave ; Alendronate ; Osteoarthritis ; Knee ; Rat
  • 刊名:Shock Waves
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:53-62
  • 全文大小:1,579 KB
  • 参考文献:1.Lane, N.E., Nevitt, M.C.: Osteoarthritis, bone mass, and fractures: how are they related? Arthritis Rheum. 46, 1–4 (2002)CrossRef
    2.Oettmeier, R., Abendroth, K.: Osteoarthritis and bone: osteologic types of osteoarthritis of the hip. Skelet. Radiol. 18, 165–174 (1989)CrossRef
    3.Burr, D.M., Schaffler, M.B.: The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc. Res. Tech. 37, 343–357 (1997)CrossRef
    4.Burr, D.B.: The importance of subchondral bone in osteoarthrosis. Curr. Opin. Rheumatol. 10, 256–262 (1998)CrossRef
    5.Radin, E.L., Rose, R.M.: Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. 213, 34–40 (1986)
    6.Dedrick, D.K., Goulet, R., Huston, L., Goldstein, S.A., Bole, G.G.: Early bone changes in experimental osteoarthritis using microscopic computed tomography. J. Rheumatol. Suppl. 27, 44–45 (1991)
    7.Muraoka, T., Hagino, H., Okano, T., Enokida, M., Teshima, R.: Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum. 56, 3366–3374 (2007)CrossRef
    8.Dieppe, P.: Subchondral bone should be the main target for the treatment of pain and disease progression in osteoarthritis. Osteoarthr. Cartil. 7, 325–326 (1999)CrossRef
    9.Hayami, T., Pickarski, M., Wesolowski, G.A., McLane, J., Bone, A., Destefano, J., Gideon, A., Rodan, G.A., Duong, L.T.: The role of subchondral bone remodeling in osteoarthritis. Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transaction model. Arthritis Rheum. 50, 1193–1206 (2004)CrossRef
    10.Hayami, T., Pickarski, M., Zhuo, Y., Wesolowski, G.A., Rodan, G.A., Duong, L.T.: Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38, 234–243 (2006)CrossRef
    11.Ding, M., Danielsen, C.C., Hvid, I.: The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthritis. Calcif. Tissue Int. 82, 77–86 (2008)CrossRef
    12.Wang, C.J.: An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med. J. 26, 220–232 (2003)
    13.Wang, C.J., Huang, K.E., Sun, Y.C., Yang, Y.J., Ko, J.Y., Weng, L.H., Wang, F.S.: VEGF modulates angiogenesis and osteogenesis in shock wave-promoted fracture healing in rabbits. J. Surg. Res. 171, 114–119 (2011)CrossRef
    14.Wang, C.J., Wang, F.S., Yang, K.D.: Biological effects of extracorporeal shock wave in bone healing: a study in rabbits. Arch. Orthop. Trauma Surg. 128, 879–884 (2008)CrossRef
    15.Wang, C.J., Yang, K.D., Ko, J.Y., Huang, C.C., Huang, H.Y., Wang, F.S.: The effects of shock wave on bone healing and systemic concentrations of nitric oxide (NO), TGF-b1, VEGF and BMP-2 in long bone non-unions. Nitric Oxide 20, 298–303 (2009)CrossRef
    16.Wang, F.S., Yang, K.D., Wang, C.J., Huang, H.C., Chung, H., Chen, R.F., Chen, J.R.: Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-\(\beta \) 1. J. Bone Jt. Surg. Br. 84, 457–461 (2002)CrossRef
    17.Chen, Y.J., Wurtz, T., Wang, C.J., Kuo, Y.R., Yang, K.D., Huang, H.C., Wang, F.S.: Recruitment of mesenchymal stem cells and expression of TGF-\(\beta \) 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J. Orthop. Res. 22, 526–534 (2004)
    18.Takahashi, K., Yamazaki, M., Saisu, T., Nakajima, A., Shimizu, S., Mitsuhashi, S., Moriya, H.: Gene expression for extracellular matrix proteins in shock wave-induced osteogenesis in rats. Calcif. Tissue. Int. 74, 187–193 (2004)
    19.Delius, M., Draenert, K., Al Diek, Y., Draenert, Y.: Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound Med. Biol. 21, 1219–1225 (1995)CrossRef
    20.Saisu, T., Takahashi, K., Kamegaya, M., Mitsuhashi, S., Wada, Y., Moriya, H.: Effects of extracorporeal shock waves on immature rabbit femurs. J. Pediatr. Orthop. B. 13, 176–183 (2004)
    21.Wang, C.J., Weng, L.H., Ko, J.Y., Sun, Y.C., Wang, F.S.: Extracorporeal shock wave therapy shows chondroprotective effects in osteoarthritic rat knee. Arch. Orthop. Trauma Surg. 131, 1153–1158 (2011)CrossRef
    22.Wang, C.J., Ko, J.Y., Weng, L.H., Wang, J.W., Chen, J.M., Sun, Y.C., Yang, Y.J.: Extracorporeal shock wave induces regression of osteoarthritis of the knee in rats. J. Surg. Res. 171, 601–608 (2011)CrossRef
    23.Dahlberg, J., Fitch, G., Evans, R.B., McClure, S.R., Conzemius, M.: The evaluation of extracorporeal shock wave therapy in naturally occurring osteoarthritis of the stifle joint in dogs. Vet. Comp. Orthop. Traumatol. 18, 147–152 (2005)
    24.Frisbie, D.D., Kawcak, C.E., Mcllwraith, C.W.: Evaluation of the effect of extracorporeal shock wave treatment on experimentally induced osteoarthritis inmiddle carpal joints of horses. Am. J. Vet. Res. 70, 449–454 (2009)CrossRef
    25.Mueller, M., Bockstahler, B., Skalicky, M., Mlacnik, E., Lorinson, D.: Effects of radial shock wave therapy on the limb function of dogs with hip osteoarthritis. Vet. Rec. 160, 762–765 (2007). doi:10.​1136/​vr.​160.​22.​762 CrossRef
    26.Ochiai, N., Ohtori, S., Sasho, T., Nakagawa, K., Takahashi, K., Takahashi, N., Murata, R., Takahashi, K., Moriya, H., Wada, Y., Saisu, T.: Extracorporeal shock wave therapy improves motor dysfunction and pain originating from knee osteoarthritis in rats. Osteoarthr. Cartil. 15, 1093–1096 (2007)CrossRef
    27.Revenaugh, M.S.: Extracorporeal shock wave therapy for treatment of osteoarthritis in the horse: clinical application. Vet. Clin. N. Am. Equine Pract. 21, 609–625 (2005)CrossRef
    28.Hayami, T., Funaki, H., Yaoeda, K., Mitui, K., Yamagiwa, H., Tokunaga, K., et al.: Expression of the cartilage-derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J. Rheumatol. 30, 2207–2217 (2003)
    29.Mankin, H.J., Dorfman, H., Lippiello, L., Zarins, A.: Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips: II. Correlation of morphology with biochemical and metabolic data. J. Bone. Jt. Surg. Am. 53, 523–537 (1971)
    30.Ratcliffe, A., Seibel, M.J.: Biochemical markers of osteoarthritis. Curr. Opin. Rheumatol. 2, 770–776 (1990)CrossRef
    31.Wang, C.J., Wang, F.S., Yang, K.D., Huang, C.S., Hsu, C.C.: Shock wave therapy induces neovascularization at the tendon–bone junction. A study in rabbits. J. Orthop. Res. 21, 984–989 (2003)CrossRef
    32.Wang, C.J., Yang, K.D., Wang, F.S., Chen, H.S., Chen, H.H., Hsu, C.C.: Shock wave treatment shows dose-dependent enhancement of bone mass and bone strength after fracture of the femur. A study in rabbits. Bone 34, 225–230 (2004)CrossRef
  • 作者单位:Ching-Jen Wang (1) (2)
    Wen-Yi Chou (1) (2)
    Shan-Ling Hsu (1) (2)
    Chien-Yiu Huang (1)
    Jai-Hong Cheng (1)

    1. Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
    2. Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics, Fluids and Thermodynamics
    Fluids
    Thermodynamics
    Acoustics
    Condensed Matter
    Solid State Physics and Spectroscopy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2153
文摘
This study compared the effects of extracorporeal shock wave therapy (ESWT) and alendronate sodium (alendronate) in osteoarthritis (OA) of rat knees. The control group was subjected to a sham surgery and did not receive either ESWT or alendronate treatment. The OA group underwent anterior cruciate ligament transection (ACLT) and medial meniscectomy (MM) surgery and did not receive either ESWT or alendronate. The ESWT group underwent ACLT and MM surgery and received ESWT after the surgery. The alendronate group received alendronate after ACLT and MM surgery. The evaluations included radiograph, bone mineral density (BMD), serum C-telopeptide collagen II (CTX-II), cartilage oligomeric protein (COMP), alkaline phosphatase and osteocalcin, histopathological examination and immunohistochemical analysis. Radiographs at 12 weeks showed pronounced OA changes in the OA group. The BMD values, CTX-II, COMP, alkaline phosphatase and osteocalcin showed no significant difference between ESWT and alendronate groups. In histopathology, the Mankin and Safranin O scores significantly increased in the OA, ESWT and alendronate groups, but without any significant difference between the ESWT and alendronate groups. In immunohistochemical analysis, the von Willebrand factor (vWF), vascular endothelial factor (VEGF), soluble vascular cell adhesion molecule (sVCAM), proliferating cell nuclear antigen (PCNA), bone morphogenetic protein 2 (BMP-2), and osteocalcin expressions in articular cartilage and subchondral bone showed a significant decrease in the OA group, but no difference was noted between the ESWT and alendronate groups. In conclusion, ESWT and alendronate sodium demonstrate equal protective effects from developing osteoarthritis of the knee in rats. Keywords Extracorporeal shock wave Alendronate Osteoarthritis Knee Rat

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700