Generalized Hunter–Saxton Equations, Optimal Information Transport, and Factorization of Diffeomorphisms
详细信息    查看全文
  • 作者:Klas Modin
  • 关键词:Euler–Arnold equations ; Euler–Poincaré equations ; Descending metrics ; Riemannian submersion ; Diffeomorphism groups ; Fisher information metric ; Fisher–Rao metric ; Entropy differential metric ; Geometric statistics ; Hunter–Saxton equation ; Information geometry ; Optimal transport ; Polar factorization ; QR?factorization ; Cholesky factorization ; Calabi metric ; 58D05 ; 58D15 ; 35Q31 ; 53C21 ; 58B20 ; 94A17 ; 65F99
  • 刊名:Journal of Geometric Analysis
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:25
  • 期:2
  • 页码:1306-1334
  • 全文大小:439 KB
  • 参考文献:1. Amari, S., Nagaoka, H. (2000) Methods of Information Geometry. Am. Math. Soc., Providence
    2. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. Lecture notes (2009)
    3. Arnold, V.I. (1966) Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16: pp. 319-361 CrossRef
    4. Arnold, V.I., Khesin, B.A. (1998) Topological Methods in Hydrodynamics. Springer, New York
    5. Brenier, Y. (1991) Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44: pp. 375-417 CrossRef
    6. Brockett, R. (1988) Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems. Proceedings of the 27th IEEE Conference on Decision and Control, 1988. pp. 799-803
    7. ?encov, N.N. (1982) Statistical Decision Rules and Optimal Inference. Am. Math. Soc., Providence
    8. Clarke, B., Rubinstein, Y.A. (2013) Ricci flow and the metric completion of the space of K?hler metrics. Am. J. Math. 135: pp. 1477-1505 353/ajm.2013.0051" target="_blank" title="It opens in new window">CrossRef
    9. Crooks, G.E. (2007) Measuring thermodynamic length. Phys. Rev. Lett. 99: CrossRef
    10. Ebin, D.G., Marsden, J.E. (1970) Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92: pp. 102-163 CrossRef
    11. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. Lecture notes (2001)
    12. Facchi, P., Kulkarni, R., Man’ko, V., Marmo, G., Sudarshan, E., Ventriglia, F. (2010) Classical and quantum Fisher information in the geometrical formulation of quantum mechanics. Phys. Lett. A 374: pp. 4801-4803 CrossRef
    13. Feng, E.H., Crooks, G.E. (2009) Far-from-equilibrium measurements of thermodynamic length. Phys. Rev. E 79: CrossRef
    14. Fisher, R.A. (1973) Statistical Methods and Scientific Inference. Hafner Press, New York
    15. Friedrich, T. (1991) Die Fisher-Information und symplektische Strukturen. Math. Nachr. 153: pp. 273-296 CrossRef
    16. Golub, G.H., Loan, C.F. (1989) Matrix Computations. Johns Hopkins University Press, Baltimore
    17. Hamilton, R.S. (1982) The inverse function theorem of Nash and Moser. Bull., New Ser., Am. Math. Soc. 7: pp. 65-222 CrossRef
    18. Hermann, R. (1960) A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Am. Math. Soc. 11: pp. 236-242 CrossRef
    19. Holm, D.D., Schmah, T., Stoica, C. (2009) Geometric Mechanics and Symmetry. Oxford University Press, Oxford
    20. Kantorovich, L. (2006) On a problem of Monge. J. Math. Sci. 133: pp. 1383 CrossRef
    21. Kantorovich, L. (2006) On the translocation of masses. J. Math. Sci. 133: pp. 1381-1382 CrossRef
    22. Khesin, B., Lenells, J., Misio?ek, G. (2008) Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342: pp. 617-656 CrossRef
    23. Khesin, B., Lenells, J., Misio?ek, G., Preston, S.C. (2013) Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 23: pp. 334-366 CrossRef
    24. Khesin, B., Wendt, R. (2009) The Geometry of Infinite-dimensional Groups. Springer, Berlin
    25. Kohlmann, M. (2012) A note on multi-dimensional Camassa–H
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Differential Geometry
    Convex and Discrete Geometry
    Fourier Analysis
    Abstract Harmonic Analysis
    Dynamical Systems and Ergodic Theory
    Global Analysis and Analysis on Manifolds
  • 出版者:Springer New York
  • ISSN:1559-002X
文摘
We study geodesic equations for a family of right-invariant Riemannian metrics on the group of diffeomorphisms of a compact manifold. The metrics descend to Fisher’s information metric on the space of smooth probability densities. The right reduced geodesic equations are higher-dimensional generalizations of the μ-Hunter–Saxton equation, used to model liquid crystals under the influence of magnetic fields. Local existence and uniqueness results are established by proving smoothness of the geodesic spray. The descending property of the metrics is used to obtain a novel factorization of diffeomorphisms. Analogous to the polar factorization in optimal mass transport, this factorization solves an optimal information transport problem. It can be seen as an infinite-dimensional version of QR?factorization of matrices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700