The Olivocochlear Reflex Strength and Cochlear Sensitivity are Independently Modulated by Auditory Cortex Microstimulation
详细信息    查看全文
  • 作者:Constantino D. Dragicevic (1)
    Cristian Aedo (1)
    Alex Le贸n (1)
    Macarena Bowen (1) (2)
    Natalia Jara (1)
    Gonzalo Terreros (1)
    Luis Robles (1)
    Paul H. Delano (1) (3)

    1. Laboratorio de Neurobiolog铆a de la Audici贸n
    ; Programa de Fisiolog铆a y Biof铆sica ; Instituto de Ciencias Biom茅dicas ; Facultad de Medicina ; Universidad de Chile ; 8380453 ; Santiago ; Chile
    2. Escuela Fonoaudiolog铆a
    ; Facultad de Medicina ; Universidad de Chile ; 8380453 ; Santiago ; Chile
    3. Departamento de Otorrinolaringolog铆a
    ; Hospital Cl铆nico de la Universidad de Chile ; 8380456 ; Santiago ; Chile
  • 关键词:olivocochlear ; efferent system ; auditory cortex ; top ; down ; corticofugal ; electrical microstimulation
  • 刊名:JARO - Journal of the Association for Research in Otolaryngology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:16
  • 期:2
  • 页码:223-240
  • 全文大小:5,259 KB
  • 参考文献:1. Anderson, LA, Malmierca, MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37: pp. 52-62 CrossRef
    2. Antunes, FM, Malmierca, MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31: pp. 17306-16 CrossRef
    3. Azeredo, WJ, Kliment, ML, Morley, BJ, Relkin, E, Slepecky, NB, Sterns, A, Warr, WB, Weekly, JM, Woods, CI (1999) Olivocochlear neurons in the chinchilla: a retrograde fluorescent labelling study. Hear Res 134: pp. 57-70 CrossRef
    4. Backus, BC, Guinan, JJ (2007) Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. J Assoc Res Otolaryngol 8: pp. 484-96 CrossRef
    5. Bajo, VM, Moore, DR (2005) Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus. J Comp Neurol 486: pp. 101-16 CrossRef
    6. Bajo, VM, King, AJ (2013) Cortical modulation of auditory processing in the midbrain. Front Neural Circuits 6: pp. 114 CrossRef
    7. Brown, DJ, Patuzzi, RB (2010) Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 267: pp. 12-26 CrossRef
    8. Bu帽o, W (1978) Auditory nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59: pp. 62-74 CrossRef
    9. Chambers, AR, Hancock, KE, Maison, SF, Liberman, MC, Polley, DB (2012) Sound-evoked olivocochlear activation in unanesthetized mice. J Assoc Res Otolaryngol 13: pp. 209-17 CrossRef
    10. Clarac, F (2005) The history of reflexes. Part 1: from Descartes to Pavlov. IBRO History of Neuroscience. [http://ibro.info/wp-content/uploads/2012/12/The-History-of-Reflexes-Part-1.pdf]
    11. Clarac, F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57: pp. 13-21 CrossRef
    12. Darrow, KN, Maison, SF, Liberman, MC (2006) Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 9: pp. 1474-6 CrossRef
    13. Delano, PH, Elgueda, D, Hamame, CM, Robles, L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27: pp. 4146-53 CrossRef
    14. Delano, PH, Pavez, E, Robles, L, Maldonado, PE (2008) Stimulus-dependent oscillations and evoked potentials in chinchilla auditory cortex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194: pp. 693-700 CrossRef
    15. Ridder, D, Verstraeten, E, Kelen, K, Mulder, G, Sunaert, S, Verlooy, J, Heyning, P, Moller, A (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26: pp. 616-9 CrossRef
    16. Venecia, RK, Liberman, MC, Guinan, JJ, Brown, MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487: pp. 345-60 CrossRef
    17. Doucet, JR, Rose, L, Ryugo, DK (2002) The cellular origin of corticofugal projections to the superior olivary complex in the rat. Brain Res 925: pp. 28-41 CrossRef
    18. Eldredge, DH, Miller, JD, Bohne, BA (1981) A frequency-position map for the chinchilla cochlea. J Acoust Soc Am 69: pp. 1091-1095 CrossRef
    19. Elgueda, D, Delano, PH, Robles, L (2011) Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 12: pp. 317-27 CrossRef
    20. Feldman, AG, Orlovsky, GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37: pp. 481-94 CrossRef
    21. Fenoy, AJ, Severson, MA, Volkov, IO, Brugge, JF, Howard, MA (2006) Hearing suppression induced by electrical stimulation of human auditory cortex. Brain Res 1118: pp. 75-83 CrossRef
    22. Fregni, F, Marcondes, R, Boggio, PS, Marcolin, MA, Rigonatti, SP, Sanchez, G, Nitsche, MA, Pascual-Leone, A (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13: pp. 996-1001 CrossRef
    23. Gaucher, Q, Edeline, JM, Gour茅vitch, B (2012) How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. J Physiol Paris 106: pp. 93-103 CrossRef
    24. Groff, JA, Liberman, MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90: pp. 3178-200 CrossRef
    25. Guitton, MJ, Avan, P, Puel, JL, Bonfils, P (2004) Medial olivocochlear efferent activity in awake guinea pigs. Neuroreport 15: pp. 1379-82 CrossRef
    26. Harel, N, Mori, N, Sawada, S, Mount, RJ, Harrison, RV (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11: pp. 302-12 CrossRef
    27. Harrison, RV, Kakigi, A, Hirakawa, H, Harel, N, Mount, RJ (1996) Tonotopic mapping in auditory cortex of the chinchilla. Hear Res 100: pp. 157-63 CrossRef
    28. Kawase, T, Liberman, MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70: pp. 2519-32
    29. Khalfa, S, Bougeard, R, Morand, N, Veuillet, E, Isnard, J, Guenot, M, Ryvlin, P, Fischer, C, Collet, L (2001) Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104: pp. 347-58 CrossRef
    30. Kong L, Xiong C, Li L, Yan J (2014) Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice. Front Syst Neurosci 1;8:125.
    31. Lamas, V, Alvarado, JC, Carro, J, Merch谩n, MA (2013) Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex. PLoS One 8: pp. e73585 CrossRef
    32. Langguth, B, Ridder, D (2013) Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol 116: pp. 441-67 CrossRef
    33. Larsen, E, Liberman, MC (2009) Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents?. Hear Res 256: pp. 1-10 CrossRef
    34. Leon, A, Elgueda, D, Silva, MA, Hamam茅, CM, Delano, PH (2012) Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One. 7: pp. e36203 CrossRef
    35. Liberman, MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38: pp. 47-56 CrossRef
    36. Liberman, MC, Liberman, LD, Maison, SF (2014) Efferent feedback slows cochlear aging. J Neurosci 34: pp. 4599-607 CrossRef
    37. Luo, F, Wang, Q, Kashani, A, Yan, J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28: pp. 11615-21 CrossRef
    38. Liu, X, Yan, Y, Wang, Y, Yan, J (2010) Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 5: pp. e14038 CrossRef
    39. Maison, SF, Liberman, MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20: pp. 4701-7
    40. Malmierca and Ryugo (2011) Descending connections of the auditory cortex to the midbrain and the brainstem. Chapter 9, The auditory cortex, Eds. Winer JA and Schreiner CE, Springer.
    41. McIntyre, D, Ring, C, Carroll, D (2004) Effects of arousal and natural baroreceptor activation on the human muscle stretch reflex. Psychophysiology 41: pp. 954-60 CrossRef
    42. Mulders, WH, Robertson, D (2000) Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hear Res 144: pp. 65-72 CrossRef
    43. Oatman, LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32: pp. 341-356 CrossRef
    44. Perrot, X, Ryvlin, P, Isnard, J, Gu茅not, M, Catenoix, H, Fischer, C, Maugui猫re, F, Collet, L (2006) Evidence for corticofugal modulation of peripheral auditory activity in humans. Cereb Cortex 16: pp. 941-8 CrossRef
    45. Robles, L, Delano, PH (2008) Efferent system. The senses: a comprehensive reference. Academic Press, London CrossRef
    46. Salda帽a, E, Feliciano, M, Mugnaini, E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371: pp. 15-40 CrossRef
    47. Schofield, BR (2010) Central descending auditory pathways. Auditory and vestibular efferents. Springer, New York
    48. Schofield, BR, Coomes, DL (2005) Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res 199: pp. 89-102 CrossRef
    49. Sellick, P, Patuzzi, R, Robertson, D (2003) Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts. Hear Res 176: pp. 42-58 CrossRef
    50. Sridhar, TS, Liberman, MC, Brown, MC, Sewell, WF (1995) A novel cholinergic 鈥渟low effect鈥?of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15: pp. 3667-78
    51. Srinivasan, S, Keil, A, Stratis, K, Woodruff Carr, KL, Smith, DW (2012) Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention. Neuroscience 223: pp. 325-32 CrossRef
    52. Straka, H (2010) Ontogenetic rules and constraints of vestibulo-ocular reflex development. Curr Opin Neurobiol 20: pp. 689-95 CrossRef
    53. Tang, AH, Schroeder, LA (1973) Spinal-cord depressant effects of ketamine and etoxadrol in the cat and the rat. Anesthesiology 39: pp. 37-43 CrossRef
    54. Thompson, AM, Thompson, GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335: pp. 402-12 CrossRef
    55. Velluti, R, Pedemonte, M, Garcia-Austt, E (1989) Correlative changes of auditory nerve and microphonic potentials throughout sleep. Hear Res 39: pp. 203-208 CrossRef
    56. Wittekindt, A, Kaiser, J, Abel, C (2014) Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study. J Neurosci 34: pp. 9995-10002 CrossRef
    57. Xiao, Z, Suga, N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5: pp. 57-63 CrossRef
    58. Xiao, Z, Suga, N (2002) Reorganization of the cochleotopic map in the bat鈥檚 auditory system by inhibition. Proc Natl Acad Sci USA 99: pp. 15743-8 CrossRef
    59. Zhang, J, Zhang, Y, Zhang, X (2011) Auditory cortex electrical stimulation suppresses tinnitus in rats. J Assoc Res Otolaryngol 12: pp. 185-201 CrossRef
    60. Zhang, J (2013) Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies. Hear Res 295: pp. 38-57 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Otorhinolaryngology
    Neurosciences
    Neurobiology
  • 出版者:Springer New York
  • ISSN:1438-7573
文摘
In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700