Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment
详细信息    查看全文
  • 作者:Valeria E. Campos (1) (2) (3)
    Gabriel Gatica (2) (3)
    Laura M. Bellis (3) (4)

    1. Interacciones Biol贸gicas del Desierto (INTERBIODES)
    ; IMCN - Universidad Nacional de San Juan ; Av. Ignacio de la Roza 590 (Oeste) ; 5400 ; Rivadavia ; San Juan ; Argentina
    2. Departamento de Biolog铆a y Museo de Ciencias Naturales
    ; Facultad Ciencias Exactas ; F铆sicas y Naturales ; Universidad Nacional de San Juan ; San Juan ; Argentina
    3. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas (CONICET)
    ; Buenos Aires ; Argentina
    4. Instituto de Diversidad y Ecolog铆a Animal (IDEA) CONICET/UNC and Facultad de Ciencias Exactas F铆sicas y Naturales
    ; Universidad Nacional de C贸rdoba ; C贸rdoba ; Argentina
  • 关键词:Habitat selection ; Soil Adjusted Total Vegetation Index ; Image texture ; Rocky habitat ; Viscacha rat ; Desert ecosystem
  • 刊名:Acta Theriologica
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:60
  • 期:2
  • 页码:117-126
  • 全文大小:3,935 KB
  • 参考文献:1. Austin, MP, Nicholls, AO, Doherty, MD, Meyers, JA (1994) Determining species response functions to an environmental gradient by means of a beta-function. J Veg Sci 5: pp. 215-228 CrossRef
    2. Baraldi, A, Parmiggiani, F (1995) An investigation of textural characteristics associated with gray level co-occurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens 33: pp. 293-304 CrossRef
    3. Bellis, LM, Pidgeon, AM, Radeloff, VC, St-Louis, V, Navarro, JL, Martella, MB (2008) Modeling habitat suitability for greater rheas based on satellite image texture. Ecol Appl 18: pp. 1956-1966 CrossRef
    4. Bolstad, PV, Lillesand, TM (1992) Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and landsat thematic mapper data. For Sci 38: pp. 5-20
    5. Boyce, MS, Vernier, PR, Scott, EN, Schmiegelow, FKA (2002) Evaluating resource selection functions. Ecol Model 157: pp. 281-300 CrossRef
    6. Bradley, BA, Olsson, AD, Wang, O, Dickson, BG, Pelech, L, Sesnie, SE, Zachmann, LJ (2012) Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data?. Ecol Model 244: pp. 57-64 del.2012.06.019" target="_blank" title="It opens in new window">CrossRef
    7. Brown, DG (1994) Predicting vegetation types at treeline using topography and biophysical disturbance variables. J Veg Sci 5: pp. 642-656 CrossRef
    8. Burnham, KP, Anderson, DR (2002) Model selection and multimodel inference. A practical information鈥攖heoretic approach. Springer, New York
    9. Campbell, JB (2002) Introduction to remote sensing. The Guilford Press, New York
    10. Campos VE (2012) Biolog铆a de / Octomys mimax (Rodentia: Octodontidae): selecci贸n de h谩bitat y conservaci贸n en el Monte 谩rido de San Juan. Dissertation, Universidad Nacional de C贸rdoba; Argentina
    11. Campos, VE, Giannoni, SM (2013) Habitat selection by the viscacha rat (Octomys mimax, Rodentia: Octodontidae) in a spatially heterogeneous landscape. Mamm.
    12. Campos, VE, Andino, N, Cappa, F, Reus, L, Giannoni, S (2013) Microhabitat selection by Octomys mimax (Rodentia: Octodontidae) in the Monte Desert is affected by attributes and thermal properties of crevices. Rev Chil Hist Nat 86: pp. 315-324 CrossRef
    13. Card, D (1982) Using know map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm Eng Remote Sens 48: pp. 431-439
    14. Crist, CP, Cicone, RC (1984) Application of the tasseled cap concept to simulate thematic mapper data. Photogramm Eng 50: pp. 343-352
    15. Devictor, V, Julliard, R, Jiguet, F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117: pp. 507-514 CrossRef
    16. Ebensperger, LA, Sobrero, R, Campos, V, Giannoni, SM (2008) Activity, ranges areas, and nesting patterns in the viscacha rat, Octomys mimax: implications for its social organization. J Arid Environ 72: pp. 1174-1183 denv.2008.02.003" target="_blank" title="It opens in new window">CrossRef
    17. Elith, J, Graham, CH, Anderson, RP, Dud铆k, M, Ferrier, S, Guisan, A, Hijmans, RJ, Huettmann, F, Leathwick, JR, Lehmann, A, Li, J, Lohmann, LG, Loiselle, BA, Manion, G, Moritz, C, Nakamura, M, Nakazawa, Y, Overton, JMC, Townsend Peterson, A, Philli, SJ (2006) Novel methods improve prediction of species鈥檇istribution from occurrence data. Ecography 29: pp. 129-151 CrossRef
    Environment for visualizing images. Version 4.1. Research Systems, Boulder, Colorado
    18. Estes, LD, Okin, GS, Mwangi, AG, Shugart, HH (2008) Habitat selection by a rare forest antelope: a multi-scale approach combining field data and imagery from three sensors. Remote Sens Environ 112: pp. 2033-2050 CrossRef
    19. Fortin, D, Morris, DW, McLoughlin, PD (2008) Habitat selection and the evolution of specialist in heterogeneous environments. Israel J Ecol Evol 54: pp. 311-328 CrossRef
    20. Gatica MG (2010) Estudio del estado y cambio temporal de la cobertura vegetal usando teledetecci贸n, sistemas de informaci贸n geogr谩fica y t茅cnicas cuantitativas de ecolog铆a de paisajes en un sitio del Monte Central, San Juan (Argentina). Dissertation, Universidad Nacional de San Juan, Argentina
    21. Ge, S, Carruthers, R, Gong, P, Herrera, A (2006) Texture analysis for mapping Tamarix parviflora using aerial photographs along the cache creek, California. Environ Monit Assess 114: pp. 65-83 CrossRef
    22. Goir谩n, SB, Aranibar, JN, Gomez, ML (2012) Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte Desert (Argentina). J Arid Environ 87: pp. 188-197 denv.2012.07.011" target="_blank" title="It opens in new window">CrossRef
    23. Gottschalk, TK, Huettmann, F, Ehlers, M (2005) Thirty years of analyzing and modeling avian habitat relationships using satellite imagery data: a review. Int J Remote Sens 26: pp. 2631-2656 CrossRef
    24. Gould, W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol Appl 10: pp. 1861-1870 CrossRef
    25. Hall-Beyer M (2007) The GLCM tutorial home page. Current Version 2.10
    26. Haralick, RM, Shanmugam, K, Dinstein, I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3: pp. 610-621 CrossRef
    27. Heiberger, RM, Holland, B (2004) Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS. Springer Texts in Statistics, New York CrossRef
    28. Herfindal, I, Solberg, EJ, S訒ther, BE, H酶gda, KA, Andersen, R (2006) Environmental phenology and geographical gradients in moose body mass. Oecologia 150: pp. 213-224 CrossRef
    29. Huete, AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25: pp. 295-309 CrossRef
    30. Johnson, CJ, Nielsen, SE, Merrill, EH, McDonald, TL, Boyce, MS (2006) Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. J Wildl Manag 70: pp. 347-357 CrossRef
    31. Kauth RJ and Thomas GS (1976) The tasseled cap- a graphic description of the spectral temporal development of agricultural crops as seen in Landsat. Proc Symp Machine Process Remotely Sensed Data 41鈥?1
    32. Labraga, JC, Villalba, R (2009) Climate in the Monte desert: past trends, present conditions, and future projections. J Arid Environ 73: pp. 154-163 denv.2008.03.016" target="_blank" title="It opens in new window">CrossRef
    33. Labrandero JL (1978) Aplicaci贸n de m茅todos digitales al reconocimiento de suelos mediante sensores remotos. Thesis Universidad Aut贸noma de Madrid, Espa帽a
    34. Mares, MA (1997) The geobiological interface: granitic outcrops as a selective force in mammalian evolution. JR Soc West Aust 80: pp. 131-139
    35. M谩rquez, J, Mart铆nez Carretero, E, Dalmasso, A, Pastr谩n, G, Ortiz, G (2005) Las 谩reas protegidas de la provincia de San Juan (Argentina) II. La vegetaci贸n del Parque Provincial de Ischigualasto. Multequina. Lat Am J Nat Resour 14: pp. 1-27
    36. Marsett, RC, Qi, J, Heilman, P, Biedenbender, SH, Watson, MC, Amer, S, Weltz, M, Goodrich, D, Marsett, R (2006) Remote sensing for grassland management in the arid southwest. Rangeland Ecol Manag 59: pp. 530-540 CrossRef
    37. Martinelli M (2009) Caracterizaci贸n de la degradaci贸n de tierras en sistemas productivos de zonas 谩ridas, en Valle F茅rtil, Noreste de San Juan, Argentina. Identificaci贸n de indicadores. Dissertation, Universidad Nacional de R铆o Cuarto, Argentina
    38. Mihran T, Jain AK (1998) Texture analysis. In Chen CH, Pau LF, Wang PSP (eds.) The handbook of pattern recognition and computer vision. Word Scientific Publishing Co, pp 207鈥?48
    39. Nagendra, H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22: pp. 2377-2400 CrossRef
    40. Nutt, KJ Socioecology of rock-dwelling rodents. In: Wolf, JO, Sherman, PW eds. (2007) Rodent societies: an ecological and evolutionary perspective. Chicago University Press, Chicago and London, pp. 193-402
    41. Olofsson, P, Foody, GM, Stehman, SV, Woodcock, CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129: pp. 122-131 CrossRef
    42. Osborne, PE, Alonso, JC, Bryant, RG (2001) Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J Appl Ecol 38: pp. 458-471 CrossRef
    43. Pettorelli, N, Olav Vik, J, Mysterud, A, Gaillard, JM, Tucker, CJ, Stenseth, NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20: pp. 503-510 CrossRef
    44. Pimm, SL, Askins, RA (1995) Forest losses predict bird extinctions in eastern North-America. Proc Natl Acad Sci U S A 92: pp. 9343-9347 CrossRef
    45. Pitman, NCA, Jorgensen, PM, Williams, RSR, Leon-Yanez, S, Valencia, R (2002) Extinction-rate estimates for a modern neotropical flora. Conserv Biol 16: pp. 1427-1431 CrossRef
    46. Quantum GIS Version 1.7.0 鈥淲roclaw鈥?Development Team, 2010. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org/
    47. R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
    48. Riaza, A, Escuder, J, Villar, P, Alfageme, SM (1994) Reflectancia espectral en el visible e infrarrojo cercano (400鈥?500聽nm) de distintas litolog铆as en un conjunto 铆gneo y metam贸rfico (Salamanca, Espa帽a): aplicaciones en cartograf铆a geol贸gica. Rev Soc Geol Esp 7: pp. 7-20
    49. Rogers, DJ, Randolph, SE, Snow, RW, Hay, SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415: pp. 710-715 CrossRef
    50. Schott, JR, Volchok, WJ (1985) Thematic mapper thermal infrared calibration. Photogramm Eng Remote Sens 51: pp. 1351-1357
    51. St-Louis, V, Pidgeon, AM, Radeloff, VC, Hawbaker, TJ, Clayton, MK (2006) Image texture in high-resolution remote sensing images as predictor of bird species richness. Remote Sens Environ 105: pp. 299-312 CrossRef
    52. St-Louis, V, Pidgeon, AM, Clayton, MK, Locke, BA, Bash, D, Radeloff, VC (2009) Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan desert of New Mexico. Ecography 32: pp. 468-480 CrossRef
    53. Thomas CD, Williams SE, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL (2004) Biodiversity conservation 鈥?uncertainty in predictions of extinction risk 鈥?effects of changes in climate and land use 鈥?climate change and extinction risk 鈥?reply. Nature 430
    54. Traba, J, Acebes, P, Campos, VE, Giannoni, SM (2010) Habitat selection by two sympatric rodent species in the Monte desert Argentina. First data for Eligmodontia moreni and Octomys mimax. J Arid Environ 74: pp. 179-185 denv.2009.06.017" target="_blank" title="It opens in new window">CrossRef
    55. Turner, W, Spector, S, Gardiner, N, Fladeland, M, Sterling, E, Steininger, M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18: pp. 306-314 CrossRef
    56. Walker, RS, Novaro, AJ, Branch, LC (2003) Effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia). Landsc Ecol 18: pp. 185-192 CrossRef
    57. Willems, EP, Hill, RA (2009) A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). J Biogeogr 36: pp. 2300-2312 CrossRef
    58. Wood, EM, Pidgeon, AM, Radeloff, VC, Keules, NS (2012) Image texture as a remotely sensed measure of vegetation structure. Remote Sens Environ 121: pp. 516-526 CrossRef
    59. Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2013) Image texture predicts avian density and species richness. Plos One 8. doi: 10.1371/journal.pone.0063211
    60. Zar JH (1999) Biostatistical analysis. Prentice-Hall, USA
    61. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York
  • 刊物主题:Zoology; Animal Physiology; Behavioural Sciences; Animal Ecology; Evolutionary Biology; Animal Anatomy / Morphology / Histology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2190-3743
文摘
Identifying high-quality habitats across large areas is a central goal in biodiversity conservation. Remotely sensed data provide the opportunity to study different habitat characteristics (e.g., landscape topography, soil, vegetation cover, climatic factors) that are difficult to identify at high spatial and temporal resolution on the basis of field studies. Our goal was to evaluate the applicability of remotely sensed information as a potential tool for modeling habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling species that lives in a desert ecosystem. We fitted models considering raw indices (i.e., green indices, Brightness Index (BI) and temperature) and their derived texture measures on locations used by and available for the viscacha rat. The habitat preferences identified in our models are consistent with results of field studies of landscape use by the viscacha rat. Rocky habitats were well differentiated by the second-order contrast of BI, instead of BI only, making an important contribution to the global model by capturing the heterogeneity of the substratum. Furthermore, rocky habitats are able to maintain more vegetation than much of the surrounding desert; hence, their availability might be estimated using SATVI (Soil Adjusted Total Vegetation Index) and its derived texture measures: second-order contrast and entropy. This is the first study that evaluates the usefulness of remotely sensed data for predicting and mapping habitat suitability for a small-bodied rock dwelling species in a desert environment. Our results may contribute to conservation efforts focused on these habitat specialist species by using good predictors of habitat quality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700