Investigations of flow field designs in direct methanol fuel cell
详细信息    查看全文
文摘
An experimental and simulation research had been performed to investigate the performance as well as the flow distribution in the cathode flow field in the case of direct methanol fuel cells (DMFCs). The gas was well distributed in serpentine flow field, whereas stagnation of the gas was observed in parallel flow field. These would contribute to the cell performance greatly due to mass transfer effect when the cells start operating. In addition, the durability test of DMFC was drastically affected in parallel flow field due to poor ability to drain flooded water produced electrochemically at cathode and crossover from anode. In addition, pressure drops of different flow fields were also investigated to evaluate their contribution and feasibility as an economic application for DMFC. DMFC with serpentine flow field featuring higher pressure difference resulted in a larger parasitic energy demand. However, the optimal flow field designs are needed to balance the performance and pressure loss to achieve a uniform fluid distribution and simultaneously minimize energy demand for mass transport. Consequently, flow field with grid pattern appears to be the optimal design for the DMFC cathode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700