Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage
详细信息    查看全文
  • 作者:Xue Cao ; Fangling Jiang ; Xu Wang ; Yuwen Zang ; Zhen Wu
  • 关键词:Tomato ; Chilling tolerance ; Principal component analysis ; Subordinate function analysis ; Cluster analysis ; Comprehensive evaluation
  • 刊名:Euphytica
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:205
  • 期:2
  • 页码:569-584
  • 全文大小:721 KB
  • 参考文献:Allen DJ, Ort DR (2001) Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36-2. doi:10.-016/?S1360-1385(00)01808-2 PubMed View Article
    Bajji M, Bertin P, Lutts S, Kinet JM (2004) Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro. Aust J Exp Agric 44:27-5. doi:10.-071/?Ea02199 View Article
    Bolharnordenkampe HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field—a review of current instrumentation. Funct Ecol 3:497-14. doi:10.-307/-389624 View Article
    Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180:726-32. doi:10.-016/?j.?plantsci.-011.-1.-23 PubMed View Article
    Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283-92. doi:10.-078/-176-1617-00833 PubMed View Article
    Choluj D, Kalaji HM, Niemyska B (1997) Analysis of the gas exchange components in chilled tomato plants. Photosynthetica 34:583-89. doi:10.-023/?A:-006825915953 View Article
    Ciardi JA, Varina CS, Orzolek MD (1998) Evaluation of tomato transplant production methods for improving establishment rates. HortScience 33:229-32
    Clement JMAM, vanHasselt PR (1996) Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. Phyton-Ann Rei Bot A 36:29-1
    Dmytro K, Barry AL, Randy DA, Holaday AS (2003) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033-041. doi:10.-016/?S0168-9452(03)00294-2 View Article
    Dolstra O, Haalstra SR, Van der Putten PEL, Schapendonk AHCM (1994) Genetic variation for resistance to low temperature photoinhibition of photosynthesis in maize. Euphytica 80:85-3. doi:10.-007/?BF00039302 View Article
    Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37-5. doi:10.-016/?j.?plaphy.-012.-6.-07 PubMed View Article
    Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167-73. doi:10.-046/?j.-439-0523.-999.-18002167.?x View Article
    Ghassemi-Golezani K, Khomari S, Valizadeh M, Alyari H (2008) Changes in chlorophyll content and fluorescence of leaves of winter rapeseed affected by seedling vigor and cold acclimation duration. J Food Agric Environ 6:196-99
    Glaszmann JC, Kaw RN, Khush GS (1990) Genetic divergence among cold tolerant rices (Oryza satva L.). Euphytica 45(2):95-04
    Hu WH, Yu JQ (2001) Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves. Acta Hortic Sin 28:41-6. doi:10.-321/?j.?issn:-513-353X.-001.-1.-08
    Hu WH, Zhou YH, Du YS, Xia XJ, Yu JQ (2006) Differential response of photosynthesis in greenhouse- and field-ecotypes of tomato to long-term chilling under low light. J Plant Physiol 163:1238-246. doi:10.-016/?j.?jplph.-005.-0.-06 PubMed View Article
    Islam S, Izekor E, Garner JO (2011) Effect of chilling stress on the chlorophyll fluorescence, peroxidase activity and other physiological activities in Ipomoea batatas L. genotypes. Am J Plant Physiol 6:72-2. doi:10.-923/?ajpp.-011.-2.-2 View Article
    Jolliffe L (2005) Principal component analysis. Encycl Stat Behav Sci. doi:10.-002/-470013192.?bsa501
    Kalaji HM, Govindjee Bosa K, Koscielniak J, Zuk-Golaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64-2. doi:10.-016/?j.?envexpbot.-010.-0.-09 View Article
    Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth aad yield. I. Watermelon. J Am Soc Hortic Sci 126:404-09
    Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis - the basics. Annu Rev Plant Phys 42:313-49. doi:10.-146/?annurev.?pp.-2.-60191.-01525 View Article
    Kürklü A, Hadley P, Wheldon A (1998) Effects of temperature and time of harvest on the growth and yield of aubergine (Solanum melongena L.). Turk J Agric For 22:341-48
    Li ZG, Yuan LX, Wang QL, Ding ZL, Dong CY (2013) Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:2127-136. doi:10.-007/?s11738-013-1249-2 View Article
    Liu H, Bo OY, Zhang JH, Wang TT, Li HX, Zhang YY, Yu CY, Ye ZB (2012a) Differenti
  • 作者单位:Xue Cao (1)
    Fangling Jiang (1)
    Xu Wang (1)
    Yuwen Zang (1)
    Zhen Wu (1)

    1. Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5060
文摘
Tomato is one important vegetable but with low chilling tolerance. Though research on tomato chilling tolerance has been reported, the evaluation method has not identified. In the present study, seedlings of 48 tomato lines were treated with chilling stress (4/4?°C, day/night) for 8?days, and the chilling injury index (CII) was then determined. Four physiological indexes including electrolyte leakage, total chlorophyll?(Chl) content, the chlorophyll fluorescence parameters Fv/Fm and ΦPSII were measured in leaves of tomato seedlings before and after the treatment. It was found that CII, and the electrolyte leakage increased, while the total Chl content, Fv/Fm, and ΦPSII decreased in response to chilling stress. Based on the chilling tolerance coefficients (CTCs) of four physiological indexes, the comprehensive evaluation value (D) of each tomato line was calculated by principal component analysis?(PCA), and subordinate function analysis. The D value had significant correlation with CIIs and CTCs of the physiological indexes, which suggested that D value could accurately predict the chilling tolerance of tomato lines. Based on the D values, 48 tomato lines could be divided into four groups by cluster analysis: chilling-tolerant (15 lines), medium chilling-tolerant (21 lines), low chilling-tolerant (seven lines), and chilling-sensitive (five lines). Meanwhile, linear equation was constructed. Therefore, this work provides a comprehensive and accurate method for evaluating chilling tolerance in tomato.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700