Probabilistic damage modeling and service-life prediction of concrete under freeze–thaw action
详细信息    查看全文
  • 作者:Fangliang Chen ; Pizhong Qiao
  • 关键词:Aging ; Degradation ; Durability ; Freezing and thawing ; Long ; term performance ; Service life prediction
  • 刊名:Materials and Structures
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:48
  • 期:8
  • 页码:2697-2711
  • 全文大小:1,013 KB
  • 参考文献:1.Powers T (1945) A working hypothesis for further studies of frost resistance of concrete. J Am Concr Inst 16:172-45
    2.Powers T, Helmuth R (1953) Theory of volume changes in hardened Portland cement paste during freezing Highway. Highw Res Board Proc 32:285-97
    3.Powers T (1955) Basic considerations pertaining to freezing and thawing tests. Am Soc Test Mater Proc 55:1132-155
    4.Cho T (2007) Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Constr Build Mater 21:2031-040View Article
    5.Jacobsen S, Sellevold EJ, Matala S (1996) Frost durability of high strength concrete: effect of internal cracking on ice formation. Cem Concr Res 26:919-31View Article
    6.Mazars J (1987) Comportement et endommagement du béton sous charges monotones et cycliques. -Journées E.D.F., “Calcul dynamique des barrages, Aixles-Bains
    7.Bogdanoff JL, Kozin F (1980) A new cumulative damage model. J Appl Mech 47(1):40-4View Article
    8.Breysse D (1990) Probabilistic formulation of damage-evolution law of cementitious composites. J Eng Mech 116(7):1489-510View Article
    9.Shen H, Lin J, Mu E (2000) Probabilistic model on stochastic fatigue damage. Int J Fatigue 22(7):569-72View Article
    10.Li H, Zhang M, Ou J (2007) Flexural fatigue performance of concrete containing nano-particles for pavement. Int J Fatigue 29:1292-301View Article
    11.Sain T, Chandra Kishen J (2008) Probabilistic assessment of fatigue crack growth in concrete. Int J Fatigue 30:2156-164View Article
    12.Rutherford J, Langan B, Ward M (1994) Use of control specimens in freezing and thawing testing of concrete. Cem Concr Aggreg 16:78-2View Article
    13.ASTM C231/C231?M-0 (2010) Standard test method for air content of freshly mixed concrete by the pressure method. In: American society for testing and materials, vol 04.02. ASTM, Philadelphia
    14.ASTM C143/C143?M-0a (2010) Standard test method for slump of hydraulic cement concrete. In: American society for testing and materials, vol 04.02. ASTM, Philadelphia
    15.ASTM C39/C39?M-0 (2010) Standard test method for compressive strength of cylindrical concrete specimens. In: American society for testing and materials, vol 04.02. ASTM, Philadelphia
    16.ASTM C78/C78?M-0 (2010) Standard test method for flexural strength of concrete (using simple beam with third-point loading). In: American society for testing and materials, vol 04.02. ASTM, Philadelphia
    17.ASTM C496/C496?M-1 (2010) Standard test method for splitting tensile strength of cylindrical concrete specimens. In: American society for testing and materials, vol 04.02. ASTM, Philadelphia
    18.ASTM C666 (1992) Standard test method for resistance of concrete to rapid freezing and thawing. In: Annual book of ASTM standards. vol. 04.02, American Society for Testing and Materials, Philadelphia, p 347-52
    19.ASTM C672 (1992) Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals. In: Annual book of ASTM standards, vol 04.02, American Society for Testing and Materials, Philadelphia, p 341-43
    20.RILEM TC-50 FMC (1985) Détermination de l’énergie de rupture des mortiers et bétons par flexion???trois points???de poutres encochées. Mater Struct 18, 285
    21.Qiao PZ, Xu YW (2004) Evaluation of fracture energy of composite-concrete bonded interfaces using three-point bend tests. J Compos Constr, ASCE 8(4):352-59View Article
    22.Qiao PZ, Xu YW (2005) Thermal effects on the fracture of adhesively bonded composite-concrete interface. J Adv Mater 37(2):56-2
    23.Qiao PZ, Xu YW (2008) Mode-I fracture and durability of FRP-concrete bonded interfaces. Water Sci Eng 1(4):47-0. doi: http://?dx.?doi.?org/-0.-882/?j.?issn.-674-2370.-008.-4.-05
    24.Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin
    25.Masad E, James L (2001) Implementation of high performance concrete in Washington state. Research final Report, Washington State Department of Transportation. http://?www.?wsdot.?wa.?gov/?Research/?Reports/-00/-30.-.?htm
    26.Liu X, Tang G (2007) Research on prediction method of concrete freeze-thaw durability under field environments. Chin J Rock Mech Eng 26(12):2412-419
    27.Li J, Xu W, Cao J, Lin L, Guan Y (1999) “Study on the mechanism of concrete destruction under frost action- J Hydraul Eng, 1, 412-19
    28.Russell RJ (1943) Freeze-and-thaw-frequencies in the United States. Trans Am Geophys Union, Part I 24:125-33View Article
    29.Fagerlund G (1977) The international cooperative test of the critical degree of saturation method of assessing the freeze/thaw resistance of concrete. Matériaux et Constr 10(4):231-53View Article
    30.Li W, Pour-Ghaz M, Castro J, Weiss J (2012) Water absorption and critical degree of saturation relating to freeze–thaw damage in concrete pavement joints. J Mater Civ Eng 24(3):299-07View Article
    31.Weiss J, Snyder K, Bu
  • 作者单位:Fangliang Chen (1)
    Pizhong Qiao (1) (2)

    1. Department of Civil and Environmental Engineering, Washington State University, Sloan Hall 117, Pullman, WA, 99164-2910, USA
    2. State Key Laboratory of Ocean Engineering and School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
The long-term performance of concrete subjected to freezing and thawing damage is experimentally studied. The ASTM procedures for rapid freezing and thawing are followed to condition all the test samples. Dynamic modulus of elasticity and fracture energy for different numbers of freeze/thaw (F/T) cycles are measured through nondestructive modal and cohesive fracture tests, respectively. Nonlinear regression analysis is adopted to analyze the test data, and the relationship between the relative dynamic modulus and the number of F/T cycles is established. Based on the three-parameter Weibull distribution model, the probabilistic damage analysis is performed, from which the relationships between the number of F/T cycles and damage parameter for different probabilities of reliability are established. Based on the correlations between the available field environment and the indoor laboratory experiment, the field service-life of the considered structural concrete is predicted and validated with the fracture energy test data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700