Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton
详细信息    查看全文
  • 作者:Xiyan Yang (1)
    Xianlong Zhang (1)
    Daojun Yuan (1)
    Fangyan Jin (1)
    Yunchao Zhang (1)
    Jiao Xu (1)
  • 关键词:Auxin signalling pathway ; Cotton ; RNA ; seq ; Somatic embryogenesis ; Transcription profile ; Transcription regulation
  • 刊名:BMC Plant Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:1758KB
  • 参考文献:1. Yang XY, Zhang XL: Regulation of somatic embryogenesis in higher plants. / Crit Rev Plant Sci 2010, 29:36-7. CrossRef
    2. Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM: Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. / Plant Cell, Tiss Organ Cult 2006, 86:285-01. CrossRef
    3. Domoki M, Gy?rgyey J, Bíró J, Pasternak TP, Zvara á, Bottka S, Puskás LG, Dudits D, Fehér A: Identification and characterization of genes associated with the induction of embryogenic competence in leaf-protoplast-derived alfalfa cells. / Biochim Biophys Acta 2006, 1759:543-51. CrossRef
    4. Jiménez VM: Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. / Plant Growth Regul 2005, 47:91-10. CrossRef
    5. Fehér A, Pasternak TP, Dudits D: Transition of somatic plant cells to an embryogenic state. / Plant Cell, Tiss Organ Cult 2003, 74:201-28. CrossRef
    6. Marcel AJ, Toonen TH, Ed DL S, Verhoeven HA, van Kammen A, DeVries SC: Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. / Planta 1994, 194:8.
    7. Thibaud-Nissen F: Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. / Plant Physiol 2003, 132:118-36. CrossRef
    8. Kurczyńska EU, Gaj MD, Ujczak A, Mazur E: Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. / Planta 2007, 226:619-28. CrossRef
    9. Sung ZR, Okimoto R: Coordinate gene expression during somatic embryogenesis in carrots. / Proc Natl Acad Sci USA 1983, 80:2661-665. CrossRef
    10. Sato S, Toya T, Kawahara R, Whittier RF, Fukuda H, Komamine A: Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. / Plant Mol Biol 1995, 28:39-6. CrossRef
    11. Zeng FC, Zhang XL, Zhu LF, Tu L, Guo XP, Nie YC: Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. / Plant Mol Biol 2006, 60:167-83. CrossRef
    12. Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS: Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. / Plant J 2009, 59:448-60. CrossRef
    13. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-D, VandenBosch KA, Rose RJ: The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. / Plant Physiol 2008, 146:1622-636. CrossRef
    14. Sharma S, Millam S, Hedley P, McNicol J, Bryan G: Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. / Plant Mol Biol 2008, 68:185-01. CrossRef
    15. Suprasanna P, Bapat V: Differential gene expression during somatic embryogenesis. In / Somatic Embryogenesis. Volume 2. Edited by: Mujib A, ?amaj J. Berlin/Heidelberg: Springer; 2006:305-20. CrossRef
    16. James C: / Global Status of Commercialized Biotech/GM Crops: 2010.ISAAA Brief?No. 42. Ithaca, NY: ISAAA; 2010.
    17. Wilkins T, Rajasekaran K, Anderson DM: Cotton biotechnology. / Crit Rev Plant Sci 2000, 19:511-50. CrossRef
    18. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S: High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. / Plant Cell Rep 2003, 21:635-39.
    19. Trolinder NL, Goodin JR: Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). / Plant Cell Rep 1987, 6:231-34. CrossRef
    20. Jin SX, Zhang XL, Nie YC, Guo XP, Liang SG, Zhu HG: Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. / Biol Plantarum 2006, 50:519-24. CrossRef
    21. Zhu HG, Tu LL, Jin SX, Xu L, Tan JF, Deng FL, Zhang XL: Analysis of genes differentially expressed during initial cellular dedifferentiation in cotton. / Chinese Sci Bull 2008, 53:3666-676. CrossRef
    22. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC: The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. / Plant Physiol 2001, 127:803-16. CrossRef
    23. Grabowska A, Wisniewska A, Tagashira N, Malepszy S, Filipecki M: Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. / J Plant Physiol 2009, 166:310-23. CrossRef
    24. Hu LS, Yang XY, Yuan DJ, Zeng FC, Zhang XL: GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. / Plant Biotechnol J 2011, 9:1038-048. CrossRef
    25. Leng CX, Li FG, Chen GY, Liu CL: cDNA-AFLP analysis of somatic embryogenesis at early stage in TM-1 (Gossypium hirsutum L.). / Xibei Zhiwu Xuebao 2007, 27:233-37.
    26. Wu XM, Li FG, Zhang CJ, Liu CL, Zhang XY: Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. / J Plant Physiol 2009, 166:1275-283. CrossRef
    27. Zheng ZL, Advani A, Melefors ?, Glavas S, Nordstr?m H, Ye W, Engstrand L, Andersson AF: Titration-free massively parallel pyrosequencing using trace amounts of starting material. / Nucleic Acids Res 2010, 38:e137. CrossRef
    28. Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS: De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. / BMC Genomics 2010, 11:400. CrossRef
    29. Tang FC, Barbacioru C, Wang YZ, Nordman E, Lee C, Xu NL, Wang XH, Bodeau J, Tuch BB, Siddiqui A, / et al.: mRNA-Seq whole-transcriptome analysis of a single cell. / Nat Methods 2009, 6:377-82. CrossRef
    30. Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier M, Keller W, Wang E, / et al.: Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. / Plant Physiol 2011, 156:346-56. CrossRef
    31. Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G: Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. / Planta 2002, 215:577-83. CrossRef
    32. Zeng FC, Zhang XL, Jin SX, Cheng L, Liang SG, Hu LS, Guo XP, Nie YC, Cao JL: Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. / Plant Cell, Tiss Organ Cult 2007, 90:63-0. CrossRef
    33. Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA: Next-generation tag sequencing for cancer gene expression profiling. / Genome Res 2009, 19:1825-835. CrossRef
    34. Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. / Nucleic Acids Res 2000, 28:27-0. CrossRef
    35. von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L: Developmental pathways of somatic embryogenesis. / Plant Cell, Tiss Organ Cult 2002, 69:233-49. CrossRef
    36. Botstein D, Cherry JM, Ashburner M, Ball CA, Blake JA, Butler H, Davis AP, Dolinski K, Dwight SS, Eppig JT, / et al.: Gene Ontology: tool for the unification of biology. / Nat Genet 2000, 25:25-9. CrossRef
    37. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. / Nucleic Acids Res 2008, 36:3420-435. CrossRef
    38. Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M: Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. / Plant Physiol 2010, 152:1787-795. CrossRef
    39. Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, / et al.: Toward sequencing cotton (Gossypium) genomes. / Plant Physiol 2007, 145:1303-310. CrossRef
    40. Marioni J, Mason C, Mane S, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. / Genome Res 2008, 18:1509-517. CrossRef
    41. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Graf G: Two phases of chromatin decondensation during dedifferentiation of plant cells. / J Biol Chem 2001, 276:22772-2778. CrossRef
    42. Dovzhenko A, Dal Bosco C, Meurer J, Koop HU: Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. / Protoplasma 2003, 222:107-11. CrossRef
    43. Jenik PD, Gillmor CS, Lukowitz W: Embryonic patterning in Arabidopsis thaliana. / Annu Rev Cell Dev Bi 2007, 23:207-36. CrossRef
    44. Park S, Harada JJ: Arabidopsis embryogenesis. / Method Mol Biol 2008, 427:3-6. CrossRef
    45. Huang CX, Jia YC, Yang SL, Chen B, Sun HW, Shen F, Wang YZ: Characterization of ZNF23, a KRAB-containing protein that is downregulated in human cancers and inhibits cell cycle progression. / Exp Cell Res 2007, 313:254-63. CrossRef
    46. Li ZS, Thomas TL: PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. / Plant Cell 1998, 10:383-98.
    47. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. / Nature 2010, 464:913-16. CrossRef
    48. Tsukagoshi H, Busch W, Benfey PN: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. / Cell 2010, 143:606-16. CrossRef
    49. Gaj MD, Zhang S, Harada JJ, Lemaux PG: Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. / Planta 2005, 222:977-88. CrossRef
    50. Braybrook S, Harada J: LECs go crazy in embryo development. / Trends Plant Sci 2008, 13:624-30. CrossRef
    51. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, / et al.: Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. / Plant Cell 2002, 14:1737-749. CrossRef
    52. Lagacé M, Matton D: Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. / Planta 2004, 219:185-89. CrossRef
    53. Wang XC, Niu QW, Teng C, Li C, Mu J, Chua NH, Zuo JR: Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. / Cell Res 2009, 19:224-35. CrossRef
    54. Feher A, Pasternak TP, Dudits D: Transition of somatic plant cells to an embryogenic state. / Plant Cell, Tiss Organ Cult 2003, 74:201-28. CrossRef
    55. Jiménez VM, Guevara E, Herrera J, Bangerth F: Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. / Plant Cell Rep 2001, 20:92-00. CrossRef
    56. Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD: Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. / Plant Physiol 1992, 100:1346-353. CrossRef
    57. Jiménez VM, Bangerth F: Endogenous hormone concentrations and embryogenic callus development in wheat. / Plant Cell, Tiss Organ Cult 2001, 67:37-6. CrossRef
    58. Thornburg RW, Li X: Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid. / Plant Physiol 1991, 96:802-05. CrossRef
    59. Chao IL, Cho CL, Chen LM, Liu ZH: Effect of indole-3-butyric acid on the endogenous indole-3-acetic acid and lignin contents in soybean hypocotyl during adventitious root formation. / J Plant Physiol 2001, 158:1257-262. CrossRef
    60. Siriwaradna S, Nabors MW: Tryptophan enhancement of somatic embryogenesis in rice. / Plant Physiol 1983, 73:142-46. CrossRef
    61. Chen JY, Ma PA, Zhao YD, Zhu X-P, Cui Y, Zhang YM, Chen XJ: Expression of auxin-related genes during dedifferentiation of mature embryo in wheat. / Acta Agronomica Sinica 2009, 35:1798-805.
    62. Park WJ, Kriechbaumer V, Müller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E: The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. / Plant Physiol 2003, 133:794-02. CrossRef
    63. Normanly J, Grisafi P, Fink GR, Bartel B: Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. / Plant Cell 1997, 9:1781-790.
    64. Hagen G, Kleinschmidt A, Guilfoyle T: Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. / Planta 1984, 162:147-53. CrossRef
    65. Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M: DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. / Plant J 2001, 25:213-21. CrossRef
    66. Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M: ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. / Plant J 2004, 37:471-83. CrossRef
    67. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W: Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. / Plant Cell 2005, 17:616-27. CrossRef
    68. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G: Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. / Nature 2003, 426:147-53. CrossRef
    69. Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, / et al.: Structure function analysis of the presumptive Arabidopsis auxin permease AUX1. / Plant Cell 2004, 16:3069-083. CrossRef
    70. Kim J, Harter K, Theologis A: Protein–protein interactions among the Aux/IAA proteins. / Proc Natl Acad Sci USA 1997, 94:11786-1791. CrossRef
    71. Kepinski S, Leyser O: The Arabidopsis F-box protein TIR1 is an auxin receptor. / Nature 2005, 435:446-51. CrossRef
    72. Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M: Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. / Nature 1993, 364:161-64. CrossRef
    73. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M: Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. / Nature 2001, 414:271-76. CrossRef
    74. Yang XY, Zhang XL, Fu L-L, Min L, Liu GZ: Multiple shoots induction in wild cotton (Gossypium bickii) through organogenesis and the analysis of genetic homogeneity of the regenerated plants. / Biologia 2010, 65:496-03. CrossRef
    75. Liu BF, Zhong XH, Lu YT: Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking. / J Chromatogr A 2002, 945:257-65. CrossRef
    76. Zhu LF, Tu LL, Zeng FC, Liu DQ, Zhang XL: An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. / Acta Agronomica Sinica 2005, 31:1657-659.
    77. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. / Genome Res 2008, 18:1509-517. CrossRef
    78. Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J: DATF: a database of Arabidopsis transcription factors. / Bioinformatics 2005, 21:2568-569. CrossRef
    79. Guo AY, Chen X, Gao G, Zhang H, Zhu QH, Liu XC, Zhong YF, Gu XC, He K, Luo JC: PlantTFDB: a comprehensive plant transcription factor database. / Nucleic Acids Res 2008,36(suppl 1):D966-D969.
    80. Yang XY, Tu LL, Zhu LF, Fu LL, Min L, Zhang XL: Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray. / J Exp Bot 2008, 59:3661-674. CrossRef
  • 作者单位:Xiyan Yang (1)
    Xianlong Zhang (1)
    Daojun Yuan (1)
    Fangyan Jin (1)
    Yunchao Zhang (1)
    Jiao Xu (1)

    1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
文摘
Background Somatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process. Results RNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor–encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE. Conclusion We report here the first comprehensive analysis of transcriptome dynamics that may serve as a gene expression profile blueprint in cotton SE. Our main goal was to adapt the RNA-Seq technology to this notable development process and to analyse the gene expression profile. Complex auxin signalling pathway and transcription regulation were highlighted. Together with biochemical and histological approaches, this study provides comprehensive gene expression data sets for cotton SE that serve as an important platform resource for further functional studies in plant embryogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700