Sub-Inhibitory Concentration of Piperacillin–Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli
详细信息    查看全文
  • 作者:João Paulo Lopes de Andrade ; Luiz de Macêdo Farias…
  • 刊名:Current Microbiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:72
  • 期:1
  • 页码:19-28
  • 全文大小:1,333 KB
  • 参考文献:1.Iida K, Hirata S, Nakamuta S, Koike M (1978) Inhibition of cell division of Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrob Agents Chemother 14:257–266PubMed PubMedCentral CrossRef
    2.Lorian V, Waluschka A, Kim Y (1982) Abnormal morphology of bacteria in the sputa of patients treated with antibiotics. J Clin Microbiol 16:382–386PubMed PubMedCentral
    3.Lorian VGC (1991) Effect of low antibiotic concentrations on bacteria effects on ultrastructure, virulence, and susceptibility to immune defenses. Antibiotics in Laboratory Medicine. Williams & Wilkins Co, Baltimore, pp 493–549
    4.Braga PC, Sasso MD, Sala MT (2000) Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother 45:15–25PubMed CrossRef
    5.Fonseca AP, Extremina C, Fonseca AF, Sousa JC (2004) Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 53:903–910PubMed CrossRef
    6.De Souza Filho JA, Diniz CG, Barbosa NB et al (2012) Morphological, biochemical, physiological and molecular aspects of the response of Fusobacterium nucleatum exposed to subinhibitory concentrations of antimicrobials. Anaerobe 18:566–575PubMed CrossRef
    7.Freitas MCR, Silva VL, Gameiro J et al (2015) Bacteroides fragilis response to subinhibitory concentrations of antimicrobials includes different morphological, physiological and virulence patterns after in vitro selection. Microb Pathog 78:103–113PubMed CrossRef
    8.Fonseca AP, Sousa JC (2007) Effect of antibiotic-induced morphological changes on surface properties, motility and adhesion of nosocomial Pseudomonas aeruginosa strains under different physiological states. J Appl Microbiol 103:1828–1837PubMed CrossRef
    9.Gorby GL, McGee ZA (1990) Antimicrobial interference with bacterial mechanisms of pathogenicity: effect of sub-MIC azithromycin on gonococcal piliation and attachment to human epithelial cells. Antimicrob Agents Chemother 34:2445–2448PubMed PubMedCentral CrossRef
    10.Lebrun A, Caya M, Jacques M (1992) Effects of sub-MICs of antibiotics on cell surface characteristics and virulence of Pasteurella multocida. Antimicrob Agents Chemother 36:2093–2098PubMed PubMedCentral CrossRef
    11.Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168PubMed CrossRef
    12.Mohsin M, Haque A, Ali A et al (2010) Effects of ampicillin, gentamicin, and cefotaxime on the release of Shiga toxins from Shiga toxin-producing Escherichia coli isolated during a diarrhea episode in Faisalabad, Pakistan. Foodborne Pathog Dis 7:85–90PubMed CrossRef
    13.Braga PC, Piatti G (1993) Favourable effects of sub-MIC rufloxacin concentrations in decreasing the pathogen-host cell adhesion. Pharmacol Res 28:11–19PubMed CrossRef
    14.Dal Sasso M, Culici M, Bovio C, Braga PC (2003) Gemifloxacin: effects of sub-inhibitory concentrations on various factors affecting bacterial virulence. Int J Antimicrob Agents 21:325–333PubMed CrossRef
    15.Tateda K, Ishii Y, Kimura S et al (2007) Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? J Infect Chemother 13:357–367PubMed CrossRef
    16.Majtán J, Majtánová L, Xu M, Majtán V (2008) In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. J Appl Microbiol 104:1294–1301PubMed CrossRef
    17.Sasahara T, Satoh Y, Sekiguchi T et al (2003) Pretreatment of Pseudomonas aeruginosa with a sub-MIC of imipenem enhances bactericidal activity of neutrophils. J Infect Chemother 9:297–303PubMed CrossRef
    18.Dos Santos KV, Nicoli JR, Martins WA et al (2007) Comparative activity of ertapenem and piperacillin tazobactam in a murine systemic infection model with Bacteroides fragilis and Escherichia coli. J Med Microbiol 56:1576–1579PubMed CrossRef
    19.Holt JG, Krieg NR, Sneath PHS, Staley JTWS (1994) Bergey´s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore
    20.Dos Santos SG, Diniz CG, da Silva VL et al (2007) The influence of molecular oxygen exposure on the biology of Prevotella intermedia, with emphasis on its antibiotic susceptibility. J Appl Microbiol 103:882–891PubMed CrossRef
    21.O’Toole GA, Pratt LA, Watnick PI et al (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109PubMed CrossRef
    22.Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86:6973–6977PubMed PubMedCentral CrossRef
    23.Buijs J, Dofferhoff ASM, Mouton JW, van der Meer JWM (2006) Pathophysiology of in vitro induced filaments, spheroplasts and rod-shaped bacteria in neutropenic mice. Clin Microbiol Infect 12:1105–1111PubMed CrossRef
    24.Buijs J, Dofferhoff ASM, Mouton JW, van der Meer JWM (2007) Continuous administration of PBP-2- and PBP-3-specific beta-lactams causes higher cytokine responses in murine Pseudomonas aeruginosa and Escherichia coli sepsis. J Antimicrob Chemother 59:926–933PubMed CrossRef
    25.Kazmierczak A, Pechinot A, Siebor E et al (1989) Sulbactam: secondary mechanisms of action. Diagn Microbiol Infect Dis 12:139S–146SPubMed CrossRef
    26.Moosdeen F, Williams JD, Yamabe S (1988) Antibacterial characteristics of YTR 830, a sulfone β-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob Agents Chemother 32:925–927PubMed PubMedCentral CrossRef
    27.Chen K, Sun GW, Chua KL, Gan Y-H (2005) Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother 49:1002–1009PubMed PubMedCentral CrossRef
    28.Justice SS, Hung C, Theriot JA et al (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338PubMed PubMedCentral CrossRef
    29.Gottfredsson M, Erlendsdóttir H, Sigfússon A, Gudmundsson S (1998) Characteristics and dynamics of bacterial populations during postantibiotic effect determined by flow cytometry. Antimicrob Agents Chemother 42:1005–1011PubMed PubMedCentral
    30.Wickens HJ, Pinney RJ, Mason DJ, Gant VA (2000) Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob Agents Chemother 44:682–687PubMed PubMedCentral CrossRef
    31.Rothfield L, Justice S, García-Lara J (1999) Bacterial cell division. Annu Rev Genet 33:423–448PubMed CrossRef
    32.Diarra MS, Malouin F, Jacques M (1999) Postantibiotic and physiological effects of tilmicosin, tylosin, and apramycin at subminimal and suprainhibitory concentrations on some swine and bovine respiratory tract pathogens. Int J Antimicrob Agents 12:229–237PubMed CrossRef
    33.Diarra MS, Petitclerc D, Lacasse P (2002) Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J Dairy Sci 85:1141–1149PubMed CrossRef
    34.Fang H, Edlund C, Hultenby K, Hedberg M (2002) Effects of cefoxitin on the growth and morphology of Bacteroides thetaiotaomicron strains with different cefoxitin susceptibility. Anaerobe 8:55–61CrossRef
    35.Silvestro EM, Nakano V, Arana-Chavez VE et al (2006) Effects of subinhibitory concentrations of clindamycin on the morphological, biochemical and genetic characteristics of Bacteroides fragilis. FEMS Microbiol Lett 257:189–194PubMed CrossRef
    36.Veloso Lde C, dos Santos KV, de Andrade HM et al (2013) Proteomic changes in Bacteroides fragilis exposed to subinhibitory concentration of piperacillin/tazobactam. Anaerobe 22:69–76PubMed CrossRef
    37.Valéria dos Santos K, Diniz CG, de Castro Veloso L et al (2010) Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol 161:268–275CrossRef
    38.Kai T, Tateda K, Kimura S et al (2009) A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm Pharmacol Ther 22:483–486PubMed CrossRef
    39.Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187PubMed PubMedCentral CrossRef
    40.Schifferli DM, Beachey EH (1988) Bacterial adhesion: modulation by antibiotics with primary targets other than protein synthesis. Antimicrob Agents Chemother 32:1609–1613PubMed PubMedCentral CrossRef
    41.Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293PubMed CrossRef
  • 作者单位:João Paulo Lopes de Andrade (1)
    Luiz de Macêdo Farias (1)
    João Fernando Gonçalves Ferreira (1)
    Oscar Bruna-Romero (1) (3)
    Daniele da Glória de Souza (1)
    Maria Auxiliadora Roque de Carvalho (1)
    Kênia Valéria dos Santos (2)

    1. Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 – Pampulha, C.P. 486, Belo Horizonte, MG, CEP 31270-901, Brazil
    3. Centro de Ciências Biológicas/MIP, Universidade Federal de Santa Catarina, Campus Universitário do Córrego Grande, sn, sala05, Bl. A, MIP, C.P. 476, Florianópolis, SC, CEP: 88040-970, Brazil
    2. Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Bairro Maruípe, Vitória, ES, CEP: 29043-900, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1432-0991
文摘
Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin–tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700