A sliding mode controller with a nonlinear disturbance observer for a farm vehicle operating in the presence of wheel slip
详细信息    查看全文
文摘
A sliding mode controller with a nonlinear disturbance observer is proposed and developed to control a farm vehicle to accurately track a specified path. The vehicle is subjected to lateral and longitudinal slips at front and rear wheels. The unpredictability of ground contact forces which occur at the wheels while traversing undulating, rough and sloping terrains require the controllers to be sufficiently robust to ensure stability. The work presented in this paper is directed at the practicality of its application with both matched and unmatched uncertainties considered in the controller design. The controller is designed using an offset model derived from the kinematic model and its operation is verified by simulation and field experiments. In the simulations, the kinematic model based controller is used to control both a kinematic model and a dynamic model of a tractor to verify the performance of the kinematic model based controller. The proposed controller is compared with two other nonlinear controllers, namely, back stepping control and model predictive control. In the field experiments, the three controller were used to control the physical tractor to follow a specified path. Simulation and experimental results are presented to show that the proposed controller demonstrated the required robustness and accuracy at all times.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700