A remote sensing-based approach to estimating montado canopy density using the FCD model: a contribution to identifying HNV farmlands in southern Portugal
详细信息    查看全文
  • 作者:Sérgio Godinho ; Artur Gil ; Nuno Guiomar ; Nuno Neves…
  • 关键词:Canopy density ; FCD ; Agroforestry ; Montado ; Dehesa ; Advanced vegetation index
  • 刊名:Agroforestry Systems
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:90
  • 期:1
  • 页码:23-34
  • 全文大小:1,455 KB
  • 参考文献:AFN 2010 Relatório Final do 5.º Inventário Florestal Nacional (IFN5). Autoridade Florestal Nacional, Lisboa, Portugal
    Almeida M, Guerra C, Pinto-Correia T (2013) Unfolding relations between land cover and farm management: high nature value assessment in complex silvo-pastoral systems. Geogr Tidsskr-Dan J Geogr 113(2):97–108. doi:10.​1080/​00167223.​2013.​848611 CrossRef
    Andersen E, Baldock D, Bennett H et al (2003) Developing a high nature value farming area indicator. Report for the European Environment Agency, Copenhagen
    Aronson J, Santos Pereira J, Pausas JG (eds) (2009) Cork oak woodlands on the edge: ecology, adaptative management, and restoration. Island Press, Washington
    Baynes J (2004) Assessing forest canopy density in a highly variable landscape using landsat data and FCD mapper software. Aust For 67:247–253. doi:10.​1080/​00049158.​2004.​10674942 CrossRef
    Berberoglu S, Lloyd CD, Atkinson PM, Curran PJ (2000) The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput Geosci 26:385–396CrossRef
    Berberoglu S, Curran PJ, Lloyd CD, Atkinson PM (2007) Texture classification of Mediterranean land cover. Int J Appl Earth Obs 9:322–334CrossRef
    Bernstein LS, Adler-Golden SM, Sundberg RL, Levine RY, Perkins TC, Berk A (2005) Validation of the quick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi—and hyperspectral imagery. In: Shen SS, Lewis PE (eds) SPIE proceeding algorithms and technologies for multispectral, hyperspectral and ultraspectral imagery XI. 5806: 668–678
    Bhandari S, Phinn S, Gill T (2012) Preparing landsat image time series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sens 4:1856–1886. doi:10.​3390/​rs4061856 CrossRef
    Billeter R, Liira J et al (2008) Indicators for biodiversity in agricultural lansdcapes: a pan-European study. J Appl Ecol 45:141–150CrossRef
    Boyd DS, Foody GM, Ripple WJ (2002) Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Appl Geogr 22:375–392CrossRef
    Branco O, Bugalho M, Silva LN, Barreira R, Vaz PG, Dias F (2010) Hotspot areas for biodiversity and ecosystem services in montados, technical report, world wide fund for nature (WWF) Mediterranean in Portugal & Centre for Applied Ecology Prof. Baeta Neves (CEABN). http://​awsassets.​panda.​org/​downloads/​habeas_​report2010.​pdf
    Bugalho M, Plieninger T, Aronson J, Ellatifi M, Crespo DG (2009) Open woodlands: a diversity of uses (and overuses). In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge, ecology, adaptive management, and restoration, Society for Ecological Restoration International, 1st edn. Island Press, Washington, pp 33–45
    Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. For Ecol Manag 223:45–53CrossRef
    Chandrashekhar MB, Saran S, Raju PLN, Roy PS (2005) Forest canopy density stratification: How relevant is biophysical spectral response modelling approach? Geocarto Int 20(1):15–21CrossRef
    Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC Press, Boca Raton
    Costa JC, Aguiar C, Capelo J, Lousã M, Neto C (1998) Biogeografia de Portugal Continental. Quercetea 0:5-56
    Cross AM, Settle JJ, Drake NA, Paivinen RTM (1991) Subpixel measurement of tropical forest cover using AVHRR data. Int J Remote Sens 12:1119–1129CrossRef
    Defries R, Hansen M, Steininger M, Dubayah R, Sohlberg R, Townshend J (1997) Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sens Environ 60:228–246CrossRef
    Deka J, Tripathi OP, Khan ML (2013) Implementation of forest canopy density model to monitor tropical deforestation. J Indian Soc Remote Sens 41:469–475. doi:10.​1007/​s12524-012-0224-5 CrossRef
    Díaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity of land use and wildlife. In: Pain D, Pienkowski M (eds) Farming and birds in Europe: the common agricultural policy and its implications for bird conservation. Academic Press, London, pp 178–209
    Díaz M, Pulido FJ, Marañón T (2003) Diversidad biológica y sostenibilidad ecológica y económica de los sistemas adehesados. Ecosistemas 2003
    Dorren LK, Maier AB, Seijmonsbergen AC (2003) Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For Ecol Manag 183:31–46CrossRef
    Doxa A, Bas Y, Paracchini ML, Pointereau P, Terres JM, Jiguet F (2010) Low-intensity agriculture increases farmland bird abundances in France. J Appl Ecol 47:1348–1356CrossRef
    EEA/UNEP (2004) High nature value farmland. European environmental agency and UNEP regional office for Europe. Office for official publications of the European communities, Luxembourg. http://​www.​ieep.​eu/​assets/​215/​highnaturefarmin​g.​pdf
    Fischer J, Zergerc A, Gibbons P, Stott J, Law BS (2010) Tree decline and the future of Australian farmland biodiversity. Proc Natl Acad Sci. USA 107(45):19597–19602
    Franklin SE, Hall RJ, Moskal LM, Maudie AJ, Lavigne MB (2000) Incorporating texture into classification of forest species composition from airborne multispectral images. Int J Remote Sens 21:61–79CrossRef
    Godinho C, Rabaça JE (2011) Birds like it Corky: the influence of habitat features and management of ‘montados’ in breeding bird communities. Agrofor Syst 82:183–195. doi:10.​1007/​s10457-010-9345-4 CrossRef
    Godinho S, Guiomar N, Machado R, Santos P, Sá-Sousa P, Fernandes JP, Neves N, Pinto-Correia T (2014) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor Syst. doi:10.​1007/​s10457-014-9757-7
    Gong P, Miller JR, Spanner M (1994) Forest canopy closure from classification and spectral unmixing of scene components-multisensor evaluation of an open canopy. IEEE Trans Geosci Remote Sens 32(5):1067–1080CrossRef
    Harvey CA et al (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16:1986–1999CrossRef PubMed
    Hazeu G, Milenov P, Pedroli B, Samoungi V, Eupen MV, Vassilev V (2014) High nature value farmland identification from satellite imagery, a comparison of two methodological approaches. Int J Appl Earth Obs 30: 98–112
    Jamalabad MS, Abkar AA (2004) Forest canopy density monitoring, using satellite images. XXth ISPRS Congress, Istanbul 12–23 July. Turkey, Commission 7:244. http://​www.​isprs.​org/​proceedings/​xxxv/​congress/​comm7/​papers/​48.​pdf
    James AW, Randall SM (2012) Canopy cover estimates for individual tree attributes. Moving from status to trends: Forest inventory and analysis symposium 2012. 248–253. http://​www.​nrs.​fs.​fed.​us/​pubs/​gtr/​gtr-nrs-p-105papers/​39westfall-p-105.​pdf
    Jennings SB, Brown ND, Sheil D (1999) Assessing forest canopies and understory illumination: canopy closure, canopy cover and other measures. Forestry 72:59–74CrossRef
    Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582CrossRef
    Joshi C, Leeuw JD, Skidmore AK, Duren ICV, Oosten HV (2006) Remotely sensed estimation of forest canopy density: a comparison of the performance of four methods. Int J Appl Earth Obs 8:84–95CrossRef
    Levesque J, King DJ (2003) Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health. Remote Sens Environ 84:589–602CrossRef
    Manning AD, Fischer J, Lindenmayer DB (2006) Scattered trees are keystone structures—implications for conservation. Biol Conserv 132:311–321CrossRef
    Marañón T, Pugnaire FI, Callaway RM (2009) Mediterranean-climate oak savannas: the interplay between abiotic environment and species interactions. Web Ecol 9:30–43CrossRef
    Mesquita S, Sousa AJ (2009) Bioclimatic mapping using geostatistical approaches: application to mainland Portugal. Int J Climatol 29:2156–2170CrossRef
    Mon MS, Mizoue N, Htun NZ, Kajisa T, Yoshida S (2012) Estimating forest canopy density of tropical mixed deciduous vegetation using Landsat data: a comparison of three classification approaches. Int J Remote Sens 33(4):1042–1057CrossRef
    Morelli F, Jerzak L, Tryjanowski P (2014) Birds as useful indicators of high nature value (HNV) farmland in Central Italy. Ecol Indic 38:236–242CrossRef
    Nandy S, Joshi PK, Das KK (2003) Forest canopy density stratification using biophysical modeling. J Indian Soc Remote Sens 31(4):291–297CrossRef
    Oppermann R, Beaufoy G, Jones G (2012) High nature value farming in Europe. Verlag Regionalkultur, Ubstadt-Weiher
    Panta M, Kim K, Joshi C (2008) Temporal mapping of deforestation and forest degradation in Nepal: applications to forest conservation. For Ecol Manag 256:1587–1595CrossRef
    Paracchini ML, Petersen JE, Hoogeveen Y, Bamps C, Burfield I, van Swaay C (2008) High nature value farmland in Europe: an estimate of the distribution patterns on the basis of land cover and biodiversity data. European commission, joint research centre, institute for environment and sustainability, office for official publications of the European communities, Luxembourg. http://​agrienv.​jrc.​it/​publications/​pdfs/​HNV_​Final_​Report.​pdf
    Pinto-Correia T, Carvalho-Ribeiro S (2012) High nature value farming in Portugal. In: Beaufoy G, Oppermann R, Herzog F (eds) High nature value farmland in Europe. Verlag Regionalkultur, Ubstad-Weiher, pp 336–345
    Pinto-Correia T, Ribeiro N, Sá-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agrofor Syst 82:99–104CrossRef
    Plieninger T (2006) Habitat loss, fragmentation, and alteration—quantifying the impact of land-use changes on a Spanish dehesa landscape by use of aerial photography and GIS. Landsc Ecol 21:91–105CrossRef
    Plieninger T, Bieling C (2013) Resilience-based perspectives to guiding high-nature-value farmland through socioeconomic change. Ecol Soc 18(4):20
    Plieninger T, Modolell JM, Konold W (2004) Land manager attitudes toward management, regeneration, and conservation of Spanish holm oak savannas (dehesas). Landsc Urban Plan 66:185–198CrossRef
    Rikimaru A, Roy PS, Miyatake S (2002) Tropical forest cover density mapping. Trop Ecol 43(1):39–47
    Rodríguez-Galiano VF, Chica-Olmo M (2012) Land cover change analysis of Mediterranean area in Spain using different sources of data: multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Appl Geogr 35:208–218CrossRef
    Rogan J, Chen D (2004) Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog Plann 61:301–325CrossRef
    Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn AM, Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46CrossRef
    Tomé M (2006) Current status of cork and holm oak forests in Portugal. Seminar the vitality of cork and holm oaks stands, current situation, state of knowledge and actions to take. Évora, 25th and 26th October
    van Doorn AM, Pinto-Correia T (2007) Differences in land cover interpretation in landscapes rich in cover gradients: reflections based on the montado of South Portugal. Agrofor Syst 70(2):169–183. doi:10.​1007/​s10457-007-9055-8 CrossRef
    Vicente AM, Alés RF (2006) Long term persistence of dehesas. Evidences from history. Agrofor Syst 67:19–28. doi:10.​1007/​s10457-005-1110-8 CrossRef
    Vinué A, Gómez M (2012) ArcFUEL density map based on the FCD model. Case study: Sierra de las Nieves (Spain). 3rd international conference on modelling, monitoring and management of forest fires 22–24 May 2012, New Forest, UK.http://​www.​arcfuel.​eu/​index.​php/​en/​broadcasting/​2013-02-16-09-55-39.​html?​start=​9
    Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23CrossRef
  • 作者单位:Sérgio Godinho (1)
    Artur Gil (2)
    Nuno Guiomar (1)
    Nuno Neves (3) (4)
    Teresa Pinto-Correia (1)

    1. Landscape Dynamics and Social Processes Research Group, Departamento de Paisagem, Ambiente e Ordenamento, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Ap. 94, 7002-554, Évora, Portugal
    2. CE3C - Centre for Ecology, Evolution and Environmental Changes (Research Group in Island Environmental Risks & Society); Azorean Biodiversity Group, Department of Biology, University of the Azores, 9501-801, Ponta Delgada, Portugal
    3. Faculdade de Ciências Sociais e Humanas, e-GEO, Research Centre for Geography and Regional Planning, Universidade Nova de Lisboa, Lisboa, Portugal
    4. Departamento de Paisagem, Ambiente e Ordenamento, Universidade de Évora, 7002-554, Évora, Portugal
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Forestry
    Agriculture
  • 出版者:Springer Netherlands
  • ISSN:1572-9680
文摘
Mapping the land-cover pattern dominated by complex Mediterranean silvo-pastoral systems with an accuracy that enables precise monitoring of changing tree-cover density is still an open challenge. The main goal of this paper is to demonstrate the implementation and effectiveness of the Forest Canopy Density (FCD) model in producing a remote sensing-based and detailed map of montado canopy density over a large territory in southern Portugal. This map will make a fundamental contribution to accurately identifying and assessing High Nature Value farmland in montado areas. The results reveal that the FCD model is an effective approach to estimating the density classes of montado canopy (overall accuracy = 78.0 %, kappa value = 0.71). The study also shows that the FCD approach generated good user’s and producer’s accuracies for the three montado canopy-density classes. Globally, the results obtained show that biophysical indices such as the advanced vegetation index, the bare soil index, the shadow index and the thermal index are suitable for estimating and mapping montado canopy-density classes. These results constitute the first remote sensing-based product for mapping montado canopy density that has been developed using the FCD model. This research clearly demonstrates that this approach can be used in the context of Mediterranean agro-forestry systems. Keywords Canopy density FCD Agroforestry Montado Dehesa Advanced vegetation index

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700