Fabrication and properties of cellulose-nanochitosan biocomposite film using ionic liquid
详细信息    查看全文
  • 作者:Farzam Niroomand ; Amir Khosravani ; Habibollah Younesi
  • 关键词:Nanochitosan ; Nano ; biocomposite ; Cellulose film ; Cellulose dissolution ; Ionic liquid
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1311-1324
  • 全文大小:2,276 KB
  • 参考文献:Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350CrossRef
    Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173CrossRef
    Abdulkhani A, Hojati Marvast E, Ashori A, Hamzeh Y, Karimi AN (2013a) Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. Int J Biol Macromol 62:379–386CrossRef
    Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013b) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63CrossRef
    Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446CrossRef
    American Society for Testing and Materials, ASTM D 882–02, (2002) Standard test method for tensile properties of thin plastic sheeting 1
    Amiji MM (1995) Permeability and blood compatibility properties of chitosan-poly (ethylene oxide) blend membranes for haemodialysis. Biomaterials 16(8):593–599CrossRef
    Antoniou J, Liu F, Majeed H, Zhong F (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocoll 44:309–319CrossRef
    Atef M, Rezaei M, Behrooz R (2014) Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int J Biol Macromol 70:537–544CrossRef
    Casas A, Palomar J, Alonso MV, Oliet M, Omar S, Rodriguez F (2012) Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation. Ind Crops Prod 37:155–163CrossRef
    Chang PR, Jian R, Yu J, Ma X (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740CrossRef
    Cheng G et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRef
    de Moura MR, Aouada FA, Mattoso LH (2008) Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci 321:477–483CrossRef
    de Moura MR, Lorevice MV, Mattoso LH, Zucolotto V (2011) Highly stable, edible cellulose films incorporating chitosan nanoparticles. J Food Sci 76:25–29CrossRef
    Duchemin BJ, Mathew AP, Oksman K (2009) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos A Appl Sci Manuf 40:2031–2037CrossRef
    Dutta PK, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31
    Erbil H (2006) Solid and liquid interfaces. Blackwell, Oxford
    Fernandes SC, Oliveira L, Freire CS, Silvestre AJ, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRef
    Fernandes S, Freire CS, Silvestre AJ, Pascoal Neto C, Gandini A (2011) Novel materials based on chitosan and cellulose. Polym Int 60:875–882CrossRef
    Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524CrossRef
    Focher B, Beltrame P, Naggi A, Torri G (1990) Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr Polym 12:405–418CrossRef
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
    Hasegawa M, Isogai A, Kuga S, Onabe F (1994) Preparation of cellulose-chitosan blend film using chloral/dimethyl formamide. Polymer 35:983–987CrossRef
    Heidari A, Younesi H, Mehraban Z, Heikkinen H (2013) Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles. Int J Biol Macromol 61:251–263CrossRef
    Honma T, Zhao L, Asakawa N, Inoue Y (2006) Poly (ε-Caprolactone)/Chitin and Poly (ε-Caprolactone)/Chitosan blend films with compositional gradients: fabrication and their biodegradability. Macromol Biosci 6:241–249CrossRef
    Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitrorelease study. Carbohydr Polym 95:50–56CrossRef
    Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182CrossRef
    Jiang G, Huang W, Wang B, Zhang Y, Wang H (2012) The changes of crystalline structure of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride. Cellulose 19:679–685CrossRef
    Jin J, Song M, Hourston D (2004) Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules 5:162–168CrossRef
    Khan A et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRef
    Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148CrossRef
    Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312CrossRef
    Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRef
    Lateef H, Grimes S, Kewcharoenwong P, Feinberg B (2009) Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste. J Chem Technol Biotechnol 84:1818–1827CrossRef
    Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 82:291–298CrossRef
    Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484CrossRef
    Liebert T, Heinze T, Edgar KJ (2010) Cellulose solvents: for analysis, shaping, and chemical modification. ACS symposium series 1033. American Chemical Society, Washington, DC. doi:10.​1021/​bk-2010-1033.​fw001
    Lima C, De Oliveira R, Figueiro S, Wehmann C, Goes J, Sombra A (2006) DC conductivity and dielectric permittivity of collagen–chitosan films. Mater Chem Phys 99:284–288CrossRef
    Lin W-C, Lien C-C, Yeh H-J, Yu C-M, S-h Hsu (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611CrossRef
    Luo K, Yin J, Khutoryanskaya OV, Khutoryanskiy VV (2008) Mucoadhesive and elastic films based on blends of chitosan and hydroxyethylcellulose. Macromol Biosci 8:184–192CrossRef
    Lv F, Wang C, Zhu P, Zhang C (2014) Characterization of chitosan microparticles reinforced cellulose biocomposite sponges regenerated from ionic liquid. Cellulose 21:4405–4418CrossRef
    Ma B, Zhang M, He C, Sun J (2012) New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers. Carbohydr Polym 88:347–351CrossRef
    Mahmoudian S, Wahit MU, Ismail A, Yussuf A (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydr Polym 88:1251–1257CrossRef
    Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola J-P (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRef
    Mututuvari TM, Tran CD (2014) Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether. J Hazard Mater 264:449–459CrossRef
    Pei HN, Chen XG, Li Y, Zhou HY (2008) Characterization and ornidazole release in vitro of a novel composite film prepared with chitosan/poly (vinyl alcohol)/alginate. J Biomed Mater Res Part A 85:566–572CrossRef
    Perera U, Rajapakse N (2014) Chitosan nanoparticles: preparation, characterization, and applications. In: Kim SK (ed) Seafood processing by-products. Springer, New York, pp 371–387. doi:10.​1007/​978-1-4614-9590-1_​18
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRef
    Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef
    Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822CrossRef
    Samayam IP, Hanson BL, Langan P, Schall CA (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098CrossRef
    Sébastien F, Stéphane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly (lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym 65:185–193CrossRef
    Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
    Shih C-M, Shieh Y-T, Twu Y-K (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174CrossRef
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
    Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139CrossRef
    Soheilmoghaddam M, Pasbakhsh P, Wahit MU, Bidsorkhi HC, Pour RH, Whye WT, De Silva R (2014a) Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer 55:3130–3138CrossRef
    Soheilmoghaddam M, Sharifzadeh G, Pour RH, Wahit MU, Whye WT, Lee XY (2014b) Regenerated cellulose/β-cyclodextrin scaffold prepared using ionic liquid. Mater Lett 135:210–213CrossRef
    Soheilmoghaddam M, Wahit MU, Whye TW, Akos NI, Pour RH, Yussuf AA (2014c) Bionanocomposites of regenerated cellulose/zeolite prepared using environmentally benign ionic liquid solvent. Carbohydr Polym 106:326–334CrossRef
    Soheilmoghaddam M, Wahit MU, Yussuf AA, Al-Saleh MA, Whye WT (2014d) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Test 33:121–130CrossRef
    Song H-Z, Luo Z-Q, Wang C-Z, Hao X-F, Gao J-G (2013) Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydr Polym 98:161–167CrossRef
    Stefanescu C, Daly WH, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87:435–443CrossRef
    Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan (chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J 55:2062–2069CrossRef
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
    Tran CD, Duri S, Delneri A, Franko M (2013) Chitosan-cellulose composite materials: preparation, characterization and application for removal of microcystin. J Hazard Mater 252–253:355–366CrossRef
    Urreaga JM, De la Orden M (2006) Chemical interactions and yellowing in chitosan-treated cellulose. Eur Polym J 42:2606–2616CrossRef
    Wang S, Shen L, Tong Y, Chen L, Phang I, Lim P, Liu T (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90:123–131CrossRef
    Wang Q, Dong Z, Du Y, Kennedy JF (2007) Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr Polym 69:336–343CrossRef
    Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965CrossRef
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley, Hoboken
    Wei L, Li K, Ma Y, Hou X (2012) Dissolving lignocellulosic biomass in a 1-butyl-3-methylimidazolium chloride–water mixture. Ind Crops Prod 37:227–234CrossRef
    Wu Y-B, Yu S-H, Mi F-L, Wu C-W, Shyu S-S, Peng C-K, Chao A-C (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440CrossRef
    Xiao W, Chen Q, Wu Y, Wu T, Dai L (2011) Dissolution and blending of chitosan using 1, 3-dimethylimidazolium chloride and 1-H-3-methylimidazolium chloride binary ionic liquid solvent. Carbohydr Polym 83:233–238CrossRef
    Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRef
    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRef
    Yousefi H, Faezipour M, Nishino T, Shakeri A, Ebrahimi G (2011a) All-cellulose composite and nanocomposite made from partially dissolved micro-and nanofibers of canola straw. Polym J 43:559–564CrossRef
    Yousefi H, Nishino T, Faezipour M, Ebrahimi G, Shakeri A (2011b) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12:4080–4085CrossRef
    Zhang M, Li X, Gong Y, Zhao N, Zhang X (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23:2641–2648CrossRef
    Zhu S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–332CrossRef
  • 作者单位:Farzam Niroomand (1)
    Amir Khosravani (1)
    Habibollah Younesi (2)

    1. Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
    2. Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Chitosan is a widely used biopolymer with very attractive properties. However, to compensate for the deficiencies in the application of this bio-macromolecule, many studies have been performed on the preparation of chitosan blends with various polymers, such as cellulose, which is abundant and unique with a tough bio-structure. Because of the different dissolution conditions of chitosan and cellulose, an acceptable industrial and environmentally friendly process to prepare a monotonous cellulose-chitosan composite film has not been achieved yet. Therefore, as an alternative approach, nanochitosan (Nano-CS) particles were synthesized and blended with a cellulose matrix, which was dissolved using ionic liquid. Atomic force microscope and field emission scanning electron microscope (FESEM) images demonstrated that the most frequent size of Nano-CS particles was in the 10–60 nm range. FESEM nano-graphs evidenced monotonous distribution of Nano-CS particles through the produced nano-biocomposite films. X-ray diffractograms indicated that following the dissolution process of cellulose a less ordered cellulose matrix or one with less crystallite sizes was formed. Meanwhile, following the addition of certain amounts of Nano-CS, the mechanical properties were improved. Also, optical analysis exhibited proper transparency of the biocomposite films (≈80 %) in the range of visible wavelengths (400–700 nm).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700