Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties
详细信息    查看全文
  • 作者:Caitlin Martin (1)
    Wei Sun (1) (2)
  • 关键词:Bioprosthetic heart valve durability ; Soft tissue fatigue ; Finite element analysis
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:13
  • 期:4
  • 页码:759-770
  • 全文大小:4,013 KB
  • 参考文献:1. Brais MP, Bedard JP et al (1985) Ionescu鈥揝hiley pericardial xenografts: follow-up of up to 6 years. Ann Thorac Surg 39(2):105鈥?11 CrossRef
    2. Brewer R, Mentzer R et al (1977) An in vivo study of the dimensional changes of the aortic valve leaflets during the cardiac cycle. J Thorac Cardiovasc Surg 74:645鈥?50
    3. Butany J, Nair V et al (2007) Carpentier鈥揈dwards Perimount valves鈥攎orphological findings in surgical explants. J Cardiac Surg 22(1):7鈥?2 CrossRef
    4. Christie GW (1992) Computer modelling of bioprosthetic heart valves. Eur J Cardiothorac Surg 6(Suppl 1):S95鈥揝100 CrossRef
    5. Cooley DA, Ott DA et al (1986) Ionescu鈥揝hiley bovine pericardial bioprostheses: clinical results in 2,701 patients. In: Bodnar E, Yacoub M (eds) Biologic and bioprosthetic valves. Yorke Medical Books, New York, p 177
    6. Dorfmann A, Ogden RW (2004) A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int J Solids Struct 41(7):1855鈥?878 CrossRef
    7. Fleisher AG, Lafaro RJ et al (2004) Immediate structural valve deterioration of 27-mm Carpentier鈥揈dwards aortic pericardial bioprosthesis. Ann Thorac Surg 77(4):1443鈥?445 CrossRef
    8. Food and Drug Administration (2010) Draft guidance for industry and FDA staff. Heart valves-investigational device exemption (ide) and premarket approval (pma) applications, submitted for comment, January 2010
    9. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York CrossRef
    10. Gabbay S, Bortolotti U et al (1984) Fatigue-induced failure of the Ionescu鈥揝hiley pericardial xenograft in the mitral position. In vivo and in vitro correlation and a proposed classification. J Thorac Cardiovasc Surg 87(6):836鈥?44
    11. Gabbay S, Bortolotti U et al (1984) Long-term follow-up of the Ionescu鈥揝hiley mitral pericardial xenograft. J Thorac Cardiovasc Surg 88(5 Pt 1):758鈥?63
    12. Haziza F, Papouin G et al (1996) Tears in bioprosthetic heart valve leaflets without calcific degeneration. J Heart Valve Dis 5(1):35鈥?9
    13. International Organization for Standardization (2005) Cardiovascular implants. Cardiac valve prostheses. ANSI/AAMI/ISO 5840
    14. Kim H, Lu J et al (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262鈥?75 CrossRef
    15. Krucinski S, Vesely I et al (1993) Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J Biomech 26(8):929鈥?43 CrossRef
    16. Machida H, Ishibashi-Ueda H et al (2001) A morphologic study of Carpentier鈥揈dwards pericardial xenografts in the mitral position exhibiting primary tissue failure in adults in comparison with Ionescu鈥揝hiley pericardial xenografts. J Thorac Cardiovasc Surg 122(4):649鈥?55 CrossRef
    17. Martin C, Sun W (2012) Biomechanical characterization of aortic valve tissue in humans and common animal models. J Biomed Mater Res Part A 100A(6):1591鈥?599
    18. Martin C, Sun W (2013) Modeling of long-term fatigue damage of soft tissue with stress-softening and permanent set effects. Biomech Model Mechanobiol. 12:645鈥?55
    19. Munt B, Webb J (2006) Percutaneous valve repair and replacement techniques. Heart 92(10):1369鈥?372 Epub 2005 Dec 9
    20. Nistal F, Artinano E et al (1986) Primary tissue valve degeneration in glutaraldehyde-preserved porcine bioprostheses: Hancock I versus Carpentier鈥揈dwards at 4- to 7-years鈥?follow-up. Ann Thorac Surg 42(5):568鈥?72 CrossRef
    21. Nistal F, Garcia-Satue E et al (1986) Comparative study of primary tissue valve failure between Ionescu鈥揝hiley pericardial and Hancock porcine valves in the aortic position. Am J Cardiol 57(1):161鈥?64 CrossRef
    22. Reul GJ Jr, Cooley DA et al (1985) Valve failure with the Ionescu鈥揝hiley bovine pericardial bioprosthesis: analysis of 2680 patients. J Vasc Surg 2(1):192鈥?04 CrossRef
    23. Schoen FJ, Fernandez J et al (1987) Causes of failure and pathologic findings in surgically removed Ionescu鈥揝hiley standard bovine pericardial heart valve bioprostheses: emphasis on progressive structural deterioration. Circulation 76(3):618鈥?27 CrossRef
    24. Schoen FJ (1991) Pathology of bioprostheses and other tissue heart valve replacements. In: Silver MD (ed) Cardiovascular pathology, 2nd edn. Churchill Livingstone, New York, pp 1547鈥?605
    25. Schoen FJ, Levy RJ (1999) Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47(4):439鈥?65 CrossRef
    26. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153鈥?73 CrossRef
    27. Singhal P, Luk A et al (2013) Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomater: 1鈥?4
    28. Smith DB, Sacks MS et al (1999) Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J Heart Valve Dis 8(1):25鈥?3
    29. Sun W (2003) Biomechanical simulations of heart valve biomaterials. Department of Bioengineering. University of Pittsburgh, Pittsburgh. Doctor of Philosophy, p 240
    30. Sun W, Abad A et al (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905鈥?14 CrossRef
    31. Sun W, Sacks MS (2005) Finite element implementation of a generalized Fung-elastic constitutive model for planar tissues. Biomech Model Mechanobiol 4(2鈥?):190鈥?99 CrossRef
    32. Sun W, Li K et al (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43(16):3085鈥?090 CrossRef
    33. Trowbridge EA, Roberts KM et al (1986) Pericardial heterografts. Toward quality control of the mechanical properties of the glutaraldehyde-fixed leaflets. J Thorac Cardiovasc Surg 92(1): 21鈥?8
    34. Trowbridge EA, Crofts CE (1987) Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design. J Biomech Eng 9(4):345鈥?55 CrossRef
    35. Vesely I (2008鈥?011) Features of a long-lived tissue valve. Retrieved April 16, 2013, from http://www.valvexchange.com/patients/index.html
    36. Vesely I (2003) The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc Pathol 12(5):277鈥?86 CrossRef
    37. Vyavahare N, Ogle M et al (1999) Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J Biomed Mater Res 46:44鈥?0 CrossRef
    38. Walley VM, Keon CA et al (1992) Ionescu鈥揝hiley valve failure II: experience with 25 low-profile expiants. Ann Thorac Surg 54(1):117鈥?22 CrossRef
    39. Webb J, Pasupati S et al (2007) Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 7(116):755鈥?63 CrossRef
  • 作者单位:Caitlin Martin (1)
    Wei Sun (1) (2)

    1. Tissue Mechanics Laboratory, Biomedical Engineering Program and Mechanical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
    2. The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
  • ISSN:1617-7940
文摘
One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700