FBXW7-Induced MTOR Degradation Forces Autophagy to Counteract Persistent Prion Infection
详细信息    查看全文
  • 作者:Yin Xu ; Chan Tian ; Jing Sun ; Jin Zhang ; Ke Ren ; Xue-Yu Fan…
  • 关键词:Autophagy ; MTOR ; FBXW7 ; Persistent prion infection
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:706-719
  • 全文大小:3,809 KB
  • 参考文献:1.Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383CrossRef PubMed PubMedCentral
    2.Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135. doi:10.​1126/​science.​1183748 CrossRef PubMed PubMedCentral
    3.Nunziante M, Ackermann K, Dietrich K, Wolf H, Gadtke L, Gilch S, Vorberg I, Groschup M, Schatzl HM (2011) Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein. J Biol Chem 286(39):33942–33953. doi:10.​1074/​jbc.​M111.​272617 CrossRef PubMed PubMedCentral
    4.Xu Y, Tian C, Wang SB, Xie WL, Guo Y, Zhang J, Shi Q, Chen C, Dong XP (2012) Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases. Autophagy 8(11):1604–1620. doi:10.​4161/​auto.​21482 CrossRef PubMed PubMedCentral
    5.Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786. doi:10.​1038/​nature05291 CrossRef PubMed
    6.Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, Fu W, Wei FZ, Wang L, Xie D, Zhu WG (2013) XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res 23(4):491–507. doi:10.​1038/​cr.​2013.​2 CrossRef PubMed PubMedCentral
    7.Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, Miao L, Zhang H (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136(2):308–321. doi:10.​1016/​j.​cell.​2008.​12.​022 CrossRef PubMed
    8.Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.​1016/​j.​cell.​2005.​07.​002 CrossRef PubMed
    9.Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi:10.​1038/​ng1362 CrossRef PubMed
    10.Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. doi:10.​1152/​physrev.​00030.​2009 CrossRef PubMed
    11.Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Acta Neuropathol 82(3):225–228CrossRef PubMed
    12.Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36(12):2563–2573. doi:10.​1016/​j.​biocel.​2004.​04.​014 CrossRef PubMed
    13.Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM, Ertmer A (2009) Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5(3):361–369CrossRef PubMed
    14.Heiseke A, Aguib Y, Riemer C, Baier M, Schatzl HM (2009) Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem 109(1):25–34. doi:10.​1111/​j.​1471-4159.​2009.​05906.​x CrossRef PubMed
    15.Doh-Ura K, Iwaki T, Caughey B (2000) Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74(10):4894–4897CrossRef PubMed PubMedCentral
    16.Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, Bostock CJ (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J 20(13):3351–3358. doi:10.​1093/​emboj/​20.​13.​3351 CrossRef PubMed PubMedCentral
    17.Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460CrossRef PubMed
    18.Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544
    19.Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:10.​1038/​ncb2152 CrossRef PubMed PubMedCentral
    20.Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461. doi:10.​1126/​science.​1196371 CrossRef PubMed PubMedCentral
    21.Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15(8):702–713. doi:10.​1016/​j.​cub.​2005.​02.​053 CrossRef PubMed
    22.Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R, Balmain A (2008) FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 321(5895):1499–1502. doi:10.​1126/​science.​1162981 CrossRef PubMed PubMedCentral
    23.Sir D, Ou JH (2010) Autophagy in viral replication and pathogenesis. Mol Cells 29(1):1–7. doi:10.​1007/​s10059-010-0014-2 CrossRef PubMed PubMedCentral
    24.Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. doi:10.​1038/​nrc2290 CrossRef PubMed
    25.Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.​1016/​j.​cell.​2012.​03.​017 CrossRef PubMed PubMedCentral
    26.Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272(16):4211–4220. doi:10.​1111/​j.​1742-4658.​2005.​04833.​x CrossRef PubMed
    27.Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, Tavare S, Inoki K, Shimizu S (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970. doi:10.​1126/​science.​1205407 CrossRef PubMed PubMedCentral
    28.Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456. doi:10.​1074/​jbc.​M001394200 PubMed
    29.Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443(7113):803–810. doi:10.​1038/​nature05294 CrossRef PubMed
    30.Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470(7335):540–542. doi:10.​1038/​nature09768 CrossRef PubMed
    31.Bueler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C (1994) High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1(1):19–30PubMed
    32.Hill AF, Collinge J (2003) Subclinical prion infection. Trends Microbiol 11(12):578–584CrossRef PubMed
    33.Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, Barrett DA, Tsaytler P, Bertolotti A, Willis AE, Bushell M, Mallucci GR (2012) Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 485(7399):507–511. doi:10.​1038/​nature11058 PubMed PubMedCentral
  • 作者单位:Yin Xu (1)
    Chan Tian (1)
    Jing Sun (1)
    Jin Zhang (1)
    Ke Ren (1)
    Xue-Yu Fan (1)
    Ke Wang (1)
    Hui Wang (1)
    Yu-E Yan (1)
    Cao Chen (1)
    Qi Shi (1)
    Xiao-Ping Dong (1) (2)

    1. State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People’s Republic of China
    2. Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Autophagy is an important protein degradation pathway and a part of the innate immune system that is activated in the brain tissue during animal and human prion diseases. However, the possible mechanism by which prion infection triggers autophagy and the significance of activated autophagy on prion accumulation remain unknown. Here, we demonstrated that autophagic flux was enhanced in the persistent prion-infected cell line, SMB-S15. Knockdown of ATG5 and the presence of three autophagic inhibitors resulted in a significant increase of PrPSc. The mammalian target of rapamycin (MTOR) levels in SMB-S15 cells were also markedly decreased, in direct relation to PrPSc accumulation. F-box and WD repeat domain containing 7 (FBXW7) levels in SMB-S15 cells and in the brains of scrapie-agent 263K-infected hamsters were upregulated at the early stage of infection, leading to active ubiquitination and degradation of MTOR. Knockdown of FBXW7 in SMB-S15 cells remarkably inhibited autophagic flux and increased PrPSc accumulation. Thus, we conclude that prion infection induced the expression of FBXW7, which mediated MTOR ubiquitination and degradation, further altering phosphorylation status through cross talk between MTORC1 and AMPK and increasing autophagic flux. Autophagy may serve as innate immunity to degrade PrPSc and maintain prion homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700