An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology
详细信息    查看全文
  • 作者:Matthias Georg Haberl ; Silvia Viana da Silva…
  • 关键词:Neuronal morphology ; Connectivity ; Sparse labeling ; Circuit reconstruction ; Neuron ; type classification ; Alzheimer’s disease
  • 刊名:Brain Structure and Function
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:220
  • 期:3
  • 页码:1369-1379
  • 全文大小:4,096 KB
  • 参考文献:Beier KT, Saunders A, Oldenburg IA, Miyamichi K, Akhtar N, Luo L, Whelan SP, Sabatini B, Cepko CL (2011) Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc Natl Acad Sci USA 108(37):15414-5419View Article PubMed Central PubMed
    Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251-59PubMed Central PubMed
    Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90(17):8033-037View Article PubMed Central PubMed
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264-78View Article PubMed
    Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617-23View Article PubMed Central PubMed
    Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1(6):3166-173View Article PubMed
    Chen BE, Lendvai B, Nimchinsky EA, Burbach B, Fox K, Svoboda K (2000) Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 7(6):433-41View Article PubMed
    Choi J, Young JA, Callaway EM (2010) Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor-ligand bridge protein. Proc Natl Acad Sci USA 107(38):16703-6708View Article PubMed Central PubMed
    da Costa NM, Martin KA (2013) Sparse reconstruction of brain circuits: or, how to survive without a microscopic connectome. Neuroimage 80:27-6View Article PubMed
    Dercksen VJ, Weber B, Guenther D, Oberlaender M, Prohaska S, Hege HC (2009) Automatic Alignment of Stacks of Filament Data. IEEE Int Symp on Biomedical Imaging: From Nano to Macro (ISBI) 971-974
    Dercksen VJ, Oberlaender M, Sakmann B, Hege HC (2012) Interactive visualization: a key prerequisite for reconstruction of anatomically realistic neural networks. Proceedings of the 2009 Workshop on Visualization in medicine and life sciences (VMLS 09)
    Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28(3):286-08View Article PubMed
    Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419-51View Article PubMed
    Faul EJ, Lyles DS, Schnell MJ (2009) Interferon response and viral evasion by members of the family rhabdoviridae. Viruses 1(3):832-51View Article PubMed Central PubMed
    Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA 110(18):7306-311View Article PubMed Central PubMed
    Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK (2011) Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472(7342):217-20View Article PubMed
    Ginger M, Broser P, Frick A (2013a) Three-dimensional tracking and analysis of ion channel signals across dendritic arbors. Front Neural Circuits 7:61PubMed Central PubMed
    Ginger M, Haberl M, Conzelmann KK, Schwarz MK, Frick A (2013b) Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 7:2PubMed Central PubMed
    Gomme EA, Faul EJ, Flomenberg P, McGettigan JP, Schnell MJ (2010) Characterization of a single-cycle rabies virus-based vaccine vector. J Virol 84(6):2820-831View Article PubMed Central PubMed
    Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10(6):501-07View Article PubMed
    Larsen DD, Wickersham IR, Callaway EM (2007) Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Front Neural Circuits 1:5PubMed Central PubMed
    Lichtman JW, Denk W (2011) The big and the small: challenges of imaging the brain’s circuits. Science 334(6056):618-23View Article PubMed
    Mebatsion T, Schnell MJ, Conzelmann KK (1995) Mokola virus glycoprotein and chimeric proteins can replace rabies virus glycoprotein in the rescue of infectious defective rabies virus particles. J Virol 69(3):1444-451PubMed Central PubMed
    Mebatsion T, Finke S, Weiland F, Conzelmann KK (1997) A CXCR4/CD4 pseudotype rhabdovirus that select
  • 作者单位:Matthias Georg Haberl (1) (2) (3)
    Silvia Viana da Silva (4) (5) (6)
    Jason M. Guest (7)
    Melanie Ginger (1) (2) (4) (5)
    Alexander Ghanem (8)
    Christophe Mulle (4) (5)
    Marcel Oberlaender (10) (7) (9)
    Karl-Klaus Conzelmann (8)
    Andreas Frick (1) (2)

    1. Physiopathologie de la plasticité neuronale, INSERM, Neurocentre Magendie, U862, Bordeaux, France
    2. Physiopathologie de la plasticité neuronale, Univ. Bordeaux, Neurocentre Magendie, U862, Bordeaux, France
    3. Institute of NeuroInformatics, University of Zurich, Zurich, Switzerland
    4. Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux, France
    5. Interdisciplinary Institute for Neuroscience, Univ. Bordeaux, UMR 5297, Bordeaux, France
    6. PDBEB CNC, University of Coimbra, Coimbra, Portugal
    7. Digital Neuroanatomy, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
    8. Max-von-Pettenkofer Institute and Gene Center of the Ludwig-Maximilians-University Munich, Munich, Germany
    10. Bernstein Center for Computational Neuroscience, Tuebingen, Germany
    9. Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
  • 刊物主题:Neurosciences; Cell Biology; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-2661
文摘
Glycoprotein-deleted rabies virus (RABV ?G) is a powerful tool for the analysis of neural circuits. Here, we demonstrate the utility of an anterograde RABV ?G variant for novel neuroanatomical approaches involving either bulk or sparse neuronal populations. This technology exploits the unique features of RABV ?G vectors, namely autonomous, rapid high-level expression of transgenes, and limited cytotoxicity. Our vector permits the unambiguous long-range and fine-scale tracing of the entire axonal arbor of individual neurons throughout the brain. Notably, this level of labeling can be achieved following infection with a single viral particle. The vector is effective over a range of ages (>14?months) aiding the studies of neurodegenerative disorders or aging, and infects numerous cell types in all brain regions tested. Lastly, it can also be readily combined with retrograde RABV ?G variants. Together with other modern technologies, this tool provides new possibilities for the investigation of the anatomy and physiology of neural circuits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700