Comparative pharmacophore modeling of human adenosine receptor A1 and A3 antagonists
详细信息    查看全文
  • 作者:ZheJun Xu (1)
    FeiXiong Cheng (1)
    Jie Li (1)
    YaDi Zhou (1)
    Ni Su (1)
    WeiHua Li (1)
    GuiXia Liu (1)
    Yun Tang (1)
  • 关键词:pharmacophore modeling ; adenosine receptors ; antagonists ; enrichment factor ; simulated virtual screening
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:55
  • 期:11
  • 页码:2407-2418
  • 全文大小:1144KB
  • 参考文献:1. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. / Nat Rev Drug Discov, 2006, 5: 247鈥?64 CrossRef
    2. Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D. A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. / Am J Respir Cell Mol Biol, 2004, 30: 118鈥?25 CrossRef
    3. Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. / Pharmacol Rev, 2001, 53: 527鈥?52
    4. Baraldi PG, Tabrizi MA, Gessi S, Borea PA. Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility. / Chem Rev, 2008, 108: 238鈥?63 CrossRef
    5. Leung E. The use of adenosine A3 receptor antagonists to inhibit tumor growth. WO Patent 2000010391, 2000-03-02
    6. Coletta AP, Tin L, Loh PH, Clark AL, Cleland JG. Clinical trials update from the European Society of Cardiology heart failure meeting: TNT subgroup analysis, darbepoetin alfa, FERRIC-HF and KW-3902. / Eur J Heart Fail, 2006, 8: 547鈥?49 CrossRef
    7. Barrett RJ, Droppleman DA, Wright KF. N-0861 selectively antagonizes adenosine A1 receptors / in vivo. / Eur J Pharmacol, 1992, 216: 9鈥?6 CrossRef
    8. Borea PA, Leung E, Chen SF, Baraldi PG. Enhancing treatment of MDR cancer with adenosine A3 antagonists. WO Patent 2004000224, 2003-12-31
    9. Moro S, Gao ZG, Jacobson KA, Spalluto G. Progress in the pursuit of therapeutic adenosine receptor antagonists. / Med Res Rev, 2006, 26: 131鈥?59 CrossRef
    10. Schrama D, Reisfeld RA, Becker JC. Antibody targeted drugs as cancer therapeutics. / Nat Rev Drug Discov, 2006, 5: 147鈥?59 CrossRef
    11. Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R. Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. / J Med Chem, 2010, 53: 1799鈥?809 CrossRef
    12. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. / Science, 2008, 322: 1211鈥?217 CrossRef
    13. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC. Structure of an agonist-bound human A2A adenosine receptor. / Science, 2011, 332: 322鈥?27 CrossRef
    14. Moro S, van Rhee AM, Sanders LH, Jacobson KA. Flavonoid derivatives as adenosine receptor antagonists: A comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. / J Med Chem, 1998, 41: 46鈥?2 CrossRef
    15. Moro S, Braiuca P, Deflorian F, Ferrari C, Pastorin G, Cacciari B, Baraldi PG, Varani K, Borea PA, Spalluto G. Combined target-based and ligand-based drug design approach as a tool to define a novel 3D-pharmacophore model of human A3 adenosine receptor antagonists: Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as a key study. / J Med Chem, 2005, 48: 152鈥?62 CrossRef
    16. Bhattacharya P, Roy K. QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives using chemometric tools. / Bioorg Med Chem Lett, 2005, 15: 3737鈥?743 CrossRef
    17. Roy K, Leonard JT, Sengupta C. QSAR of adenosine receptor antagonists. Part 3: Exploring physicochemical requirements for selective binding of 1,2,4-triazolo[5,1-i]purine derivatives with human adenosine A3 receptor subtype. / Bioorg Med Chem Lett, 2004, 14: 3705鈥?709
    18. Li AH, Moro S, Forsyth N, Melman N, Ji XD, Jacobson KA. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. / J Med Chem, 1999, 42: 706鈥?21 CrossRef
    19. Bhattacharya P, Leonard JT, Roy K. Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. / Bioorg Med Chem, 2005, 13: 1159鈥?165 CrossRef
    20. Borghini A, Pietra D, Domenichelli P, Bianucci AM. QSAR study on thiazole and thiadiazole analogues as antagonists for the adenosine A1 and A3 receptors. / Bioorg Med Chem, 2005, 13: 5330鈥?337 CrossRef
    21. Pran Kishore D, Balakumar C, Raghuram Rao A, Roy PP, Roy K. QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives with human adenosine A(3) receptor subtype. / Bioorg Med Chem Lett, 2010, 21: 818鈥?23 CrossRef
    22. van Galen PJM, van Vlijmen HWT, Ijzerman AP, Soudijn W. A model for the antagonist binding site on the adenosine A1 receptor, based on steric, electrostatic, and hydrophobic properties. / J Med Chem, 1990, 33: 1708鈥?713 CrossRef
    23. Da Settimo F, Primofiore G, Taliani S, Marini AM, la Motta C, Novellino E, Greco G, Lavecchia A, Trincavelli L, Martini C. 3-Aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones: A new class of selective A1 adenosine receptor antagonists. / J Med Chem, 2001, 44: 316鈥?27 CrossRef
    24. Cheng F, Xu Z, Liu G, Tang Y. Insights into binding modes of adenosine A(2B) antagonists with ligand-based and receptor-based methods. / Eur J Med Chem, 2010, 45: 3459鈥?471 CrossRef
    25. Xu Z, Cheng F, Da C, Liu G, Tang Y. Pharmacophore modeling of human adenosine receptor A(A) antagonists. / J Mol Model, 2010, 16: 1867鈥?876 CrossRef
    26. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. Binding DB: A web-accessible database of experimentally determined protein-ligand binding affinities. / Nucleic Acids Res, 2007, 35: D198鈥?01 CrossRef
    27. Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Moro S, Klotz KN, Leung E, Varani K, Gessi S, Merighi S, Borea PA. Pyrazolo[4,3-e] 1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A(3) adenosine receptor antagonists: influence of the chain at the N(8) pyrazole nitrogen. / J Med Chem, 2000, 43: 4768鈥?780 CrossRef
    28. Baraldi PG, Cacciari B, Moro S, Spalluto G, Pastorin G, Da Ros T, Klotz KN, Varani K, Gessi S, Borea PA. Synthesis, biological activity, and molecular modeling investigation of new pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as human A(3) adenosine receptor antagonists. / J Med Chem, 2002, 45: 770鈥?80 CrossRef
    29. Kim YC, de Zwart M, Chang L, Moro S, von Frijtag Drabbe Kunzel JK, Melman N, AP IJ, Jacobson KA. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. / J Med Chem, 1998, 41: 2835鈥?845 CrossRef
    30. Kim YC, Ji XD, Jacobson KA. Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) are selective for the human A3 receptor subtype. / J Med Chem, 1996, 39: 4142鈥?148 CrossRef
    31. Priego EM, von Frijtag Drabbe Kuenzel J, AP IJ, Camarasa MJ, Perez-Perez MJ. Pyrido[2,1-f]purine-2,4-dione derivatives as a novel class of highly potent human A(3) adenosine receptor antagonists. / J Med Chem, 2002, 45: 3337鈥?344 CrossRef
    32. Baraldi PG, Fruttarolo F, Tabrizi MA, Preti D, Romagnoli R, El-Kashef H, Moorman A, Varani K, Gessi S, Merighi S, Borea PA. Design, synthesis, and biological evaluation of C9- and C2-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as new A2A and A3 adenosine receptors antagonists. / J Med Chem, 2003, 46: 1229鈥?241 CrossRef
    33. Colotta V, Catarzi D, Varano F, Calabri FR, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Deflorian F, Moro S. 1,2,4-triazolo[4,3-a] quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: Synthesis, pharmacological, and ligand-receptor modeling studies. / J Med Chem, 2004, 47: 3580鈥?590 CrossRef
    34. Baraldi PG, Preti D, Tabrizi MA, Fruttarolo F, Romagnoli R, Zaid NA, Moorman AR, Merighi S, Varani K, Borea PA. New pyrrolo[2,1-f]purine-2,4-dione and imidazo[2,1-f]purine-2,4-dione derivatives as potent and selective human A3 adenosine receptor antagonists. / J Med Chem, 2005, 48: 4697鈥?701 CrossRef
    35. Pastorin G, Da Ros T, Bolcato C, Montopoli C, Moro S, Cacciari B, Baraldi PG, Varani K, Borea PA, Spalluto G. Synthesis and biological studies of a new series of 5-heteroarylcarbamoylamino-pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines as human A3 adenosine receptor antagonists. Influence of the heteroaryl substituent on binding affinity and molecular modeling investigations. / J Med Chem, 2006, 49: 1720鈥?729 CrossRef
    36. Da Settimo F, Primofiore G, Taliani S, Marini AM, La Motta C, Simorini F, Salerno S, Sergianni V, Tuccinardi T, Martinelli A, Cosimelli B, Greco G, Novellino E, Ciampi O, Trincavelli ML, Martini C. 5-amino-2-phenyl[1,2,3]triazolo[1,2-a][1,2,4]benzotriazin-1-one: a versatile scaffold to obtain potent and selective A3 adenosine receptor antagonists. / J Med Chem, 2007, 50: 5676鈥?684 CrossRef
    37. Cosimelli B, Greco G, Ehlardo M, Novellino E, Da Settimo F, Taliani S, La Motta C, Bellandi M, Tuccinardi T, Martinelli A, Ciampi O, Trincavelli ML, Martini C. Derivatives of 4-amino-6-hydroxy-2-mercaptopyrimidine as novel, potent, and selective A3 adenosine receptor antagonists. / J Med Chem, 2008, 51: 1764鈥?770 CrossRef
    38. Chang LC, Spanjersberg RF, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Brussee J, Ijzerman AP. 2,6-disubstituted and 2,6,8-Trisubstituted purines as adenosine receptor antagonists. / J Med Chem, 2006, 49: 2861鈥?867 CrossRef
    39. Chang LC, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Westerhout J, Spangenberg T, Brussee J, Ijzerman AP. 2,6,8-Trisubstituted 1-deazapurines as adenosine receptor antagonists. / J Med Chem, 2007, 50: 828鈥?34 CrossRef
    40. Chang LC, Spanjersberg RF, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, van den Hout G, Beukers MW, Brussee J, Ijzerman AP. 2,4,6-trisubstituted pyrimidines as a new class of selective adenosine A1 receptor antagonists. / J Med Chem, 2004, 47: 6529鈥?540 CrossRef
    41. Hayallah AM, Sandoval-Ramirez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Muller CE. 1,8-disubstituted xanthine derivatives: Synthesis of potent A2B-selective adenosine receptor antagonists. / J Med Chem, 2002, 45: 1500鈥?510 CrossRef
    42. Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J, Leonardi S, Lightowler S, McAteer S, Merrett A, Misra A, Padfield A, Reece M, Saadi M, Selwood DL, Stratton GC, Surry D, Todd R, Tong X, Ruston V, Upton R, Weiss SM. Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. / J Med Chem, 2009, 52: 33鈥?7 CrossRef
    43. Ferrarini PL, Betti L, Cavallini T, Giannaccini G, Lucacchini A, Manera C, Martinelli A, Ortore G, Saccomanni G, Tuccinardi T. Study on affinity profile toward native human and bovine adenosine receptors of a series of 1,8-naphthyridine derivatives. / J Med Chem, 2004, 47: 3019鈥?031 CrossRef
    44. Lambertucci C, Antonini I, Buccioni M, Dal Ben D, Kachare DD, Volpini R, Klotz KN, Cristalli G. 8-Bromo-9-alkyl adenine derivatives as tools for developing new adenosine A2A and A2B receptors ligands. / Bioorg Med Chem, 2009, 17: 2812鈥?822 CrossRef
    45. Baraldi PG, Borea PA. New potent and selective human adenosine A(3) receptor antagonists. / Trends Pharmacol Sci, 2000, 21: 456鈥?59 CrossRef
    46. Catalysis 4.10, Accelrys Soft ware Inc., Discovery Studio Modeling Environment, Release 2.1, Accelrys, Inc, San Diego, CA, USA, 2004. http://accelrys.com/
    47. G眉ner OF (2000) Pharmacophore perception, development, and use in drug design. LaJolla, CA: International University Line. xiii, 537 p., xx p. of col. plates p.
    48. Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. / J Comput Chem, 2011, 32: 1466鈥?474 CrossRef
    49. Tafi A, Bernardini C, Botta M, Corelli F, Andreini M, Martinelli A, Ortore G, Baraldi PG, Fruttarolo F, Borea PA, Tuccinardi T. Pharmacophore based receptor modeling: The case of adenosine A3 receptor antagonists. An approach to the optimization of protein models. / J Med Chem, 2006, 49: 4085鈥?097 CrossRef
    50. Toba S, Srinivasan J, Maynard AJ, Sutter J. Using pharmacophore models to gain insight into structural binding and virtual screening: An application study with CDK2 and human DHFR. / J Chem Inf Model, 2006, 46: 728鈥?35 CrossRef
    51. Kim HJ, Doddareddy MR, Choo H, Cho YS, No KT, Park WK, Pae AN. New serotonin 5-HT(6) ligands from common feature pharmacophore hypotheses. / J Chem Inf Model, 2008, 48: 197鈥?06 CrossRef
    52. Wang H, Duffy RA, Boykow GC, Chackalamannil S, Madison VS. Identification of novel cannabinoid CB1 receptor antagonists by using virtual screening with a pharmacophore model. / J Med Chem, 2008, 51: 2439鈥?446 CrossRef
    53. Zampieri D, Mamolo MG, Laurini E, Florio C, Zanette C, Fermeglia M, Posocco P, Paneni MS, Pricl S, Vio L. Synthesis, biological evaluation, and three-dimensional in silico pharmacophore model for sigma(1) receptor ligands based on a series of substituted benzo[d]oxazol-2(3H)-one derivatives. / J Med Chem, 2009, 52: 5380鈥?393 CrossRef
  • 作者单位:ZheJun Xu (1)
    FeiXiong Cheng (1)
    Jie Li (1)
    YaDi Zhou (1)
    Ni Su (1)
    WeiHua Li (1)
    GuiXia Liu (1)
    Yun Tang (1)

    1. Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
  • ISSN:1869-1870
文摘
Adenosine receptors are promising therapeutic targets in drug discovery. In this study, three-dimensional pharmacophore models of human adenosine receptor A1 and A3 antagonists were developed based on 26 and 23 diverse compounds, respectively. The best A1 pharmacophore model (A1_Hopy1) consists of four features: one hydrogen bond donor, one hydrophobic point and two ring aromatics, while the best A3 pharmacophore model (A3_Hopy1) also has four features: one hydrogen bond acceptor, one hydrophobic point and two ring aromatics. The correlation coefficients were 0.840 for A1 test set with 146 diverse compounds and 0.827 for A3 test set with 238 diverse compounds. In the simulated virtual screening experiments, high enrichment factors of 6.51 and 6.90 were obtained for A1_Hopy1 and A3_Hopy1 models, respectively. Moreover, two models also showed high subtype-selectivity in the simulated virtual screening experiments. These results could be helpful for the discovery of novel potent and selective A1 and A3 antagonists.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700