Solitons and dromion-like structures in an inhomogeneous optical fiber
详细信息    查看全文
文摘
In this paper, a generalized higher-order variable-coefficient nonlinear Schrödinger equation is studied, which describes the propagation of subpicosecond or femtosecond pulses in an inhomogeneous optical fiber. We derive a set of the integrable constraints on the variable coefficients. Under those constraints, via the symbolic computation and modified Hirota method, bilinear equations, one-, two-,three-soliton solutions and dromion-like structures are obtained. Properties and interactions for the solitons are studied: (a) effects on the solitons resulting from the wave number k, third-order dispersion \(\delta _1(z)\), group velocity dispersion \(\alpha (z)\), gain/loss \(\varGamma _2(z)\) and group-velocity-related \(\gamma (z)\) are discussed analytically and graphically where z is the normalized propagation distance along the fiber; (b) bound state with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) and \(\varGamma _2(z)\) are presented where some periodic or quasiperiodic formulae are derived. Interactions between the two solitons and between the bound states and a single soliton are, respectively, discussed; and (c) single, double and triple dromion-like structures with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) are also presented, distortions of which are found to be determined by those variable coefficients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700