Sensitivity analysis for a type of statically stable sailcrafts
详细信息    查看全文
  • 作者:Zheng-Xue Li (1) lzxsat@163.com
    Jun-Feng Li (1)
    He-Xi Baoyin (1)
  • 关键词:Statically stable sailcraft – ; Sensitivity – ; Solarradiation ; pressure force error – ; Mass center and pressure center errors – ; Attitude and orbit errors
  • 刊名:Acta Mechanica Sinica
  • 出版年:2012
  • 出版时间:April 2012
  • 年:2012
  • 卷:28
  • 期:2
  • 页码:532-542
  • 全文大小:646.7 KB
  • 参考文献:1. McInnes, C. R.: Solar Sailing: Technology, Dynamics, and Mission Applications. Springer Praxis, New York (1999)
    2. McInnes, C. R., MacDonald, M., Angelopolous, V., et al.: GEOSAIL: Exploring the geomag-netic tail using a small solar sail. Journal of Spacecraft and Rockets 38(4), 622–629 (2001)
    3. Leipold, M., Lappas, V., Lyngvi, A, et al.: Interstellar heliopause probe: system design of a solar sail mission to 200 AU. In: AIAA Guidance, Navigation, and Control Conference, 15–18, August, San Francisco, California (2005)
    4. Lappas, V., Wie, B., McInnes, C. R., et al.: Microsolar sails for earth magnetotail monitoring. Journal of Spacecraft and Rockets 44(4), 840–848 (2007)
    5. Wie, B.: Dynamics and control of gravity tractor spacecraft for asteroid deflection. Journal of Guidance, Control, and Dynamics 31(5), 1413–1423 (2008)
    6. Wright, L., Warmke, L.: Solar sail mission applications. In: AIA/AAS Astrodynamics Conference, 18–20, August, San Diego, CA (1976)
    7. Lichodziejewski, D., Derbes, B., West, J., et al.: Bringing an effective solar sail design toward TRL 6. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 20–23, July, Huntsville, Alabama (2003)
    8. Wie, B., Murphy, D.: Solar-sail attitude control design for a sail flight validation mission. Journal of Spacecraft and Rockets 44(4), 809–821 (2007)
    9. Wie, B.: Solar sail attitude control and dynamics, Part 2. Journal of Guidance, Control, and Dynamics 27(4), 536–544 (2004)
    10. Wie, B.: Thrust vector control analysis and design for solar-sail spacecraft. Journal of Spacecraft and Rockets 44(3), 545–557 (2007)
    11. MacDonald, M., Hughes, G. W., McInnes, C. R., et al.: Geo-Sail: An elegant solar sail demonstration mission. Journal of Spacecraft and Rockets 44(4), 784–796 (2007).
    12. Lappas, V., Mengali, G., Quarta, A., et al.: Practical systems design for an earth-magnetotail-monitoring solar sail mission. Journal of Spacecraft and Rockets 46(2), 381–393 (2009)
    13. Kirpichnikov, S. N., Kirpichnikova, E. S., Polyakhova, E. N., et al.: Planar heliocentric roto-translatory motion of a spacecraft with a solar sail of complex shape. Celestial Mechanics and Dynamical Astronomy 63(3), 255–269 (1996)
    14. McInnes, C. R.: Passive control of displaced solar sail orbits. Journal of Guidance, Control, and Dynamics 21(6), 975–982 (1998)
    15. Otten, M., Li, J., McInnes, C. R.: Near minimum-time trajectories for solar sails. Journal of Guidance, Control, and Dynamics 24(3), 632–634 (2001)
    16. Hughes, G. W., McInnes, C. R.: Solar sail hybrid trajectory optimization for non-keplerian orbit transfers. Journal of Guidance, Control, and Dynamics, 25(3), 602–604 (2002)
    17. Gong, S., Li, J., Baoyin, H.: Analysis of displaced solar sail orbits with passive control. Journal of Guidance, Control, and Dynamics 31(3), 782–785 (2008)
    18. Gong, S., Li, J., Baoyin, H.: Passive stability design for the solar sail on displaced orbits. Journal of Spacecraft and Rockets 44(5), 1071–1080 (2007)
    19. Gong, S., Li, J., Baoyin, H.: Transfer trajectories design for variable lightness solarcraft. Journal of Spacecraft and Rockets 46(4), 836–844 (2009)
    20. Kreissl, S., Sakamoto, H., Park, K. C., et al.: Design improvements of a solar sail for stiffness increase and passive attitude stabilization. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23–26, April, Honolulu, Hawaii (2007)
    21. Rios-Reyes, L., Scheeres, D.: Generalized model for solar sails. Journal of Spacecraft and Rockets 42(1), 182–185 (2005)
    22. Wie, B.: Solar sail attitude control and dynamics, Part 1. Journal of Guidance, Control, and Dynamics 27(4), 526–535 (2004)
  • 作者单位:1. School of Aerospace, Tsinghua University, 100084 Beijing, China
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Engineering Fluid Dynamics
    Numerical and Computational Methods in Engineering
    Chinese Library of Science
  • 出版者:The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of
  • ISSN:1614-3116
文摘
Two types of sensitivities are proposed for statically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation-pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensitivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700