Mapping of the genetic determinant for grain size in rice using a recombinant inbred line (RIL) population generated from two elite indica parents
详细信息    查看全文
  • 作者:Dilin Liu ; Meihua Kang ; Feng Wang ; Wuge Liu ; Chongyun Fu ; Jinhua Li…
  • 关键词:Rice (Oryza sativa L) ; Grain size ; QTL mapping ; Pleiotropic effect ; Marker ; assisted selection (MAS)
  • 刊名:Euphytica
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:206
  • 期:1
  • 页码:159-173
  • 全文大小:834 KB
  • 参考文献:Duan M, Sun Z, Shu L, Tan Y, Yu D, Sun X, Liu R, Li Y, Gong S, Yuan D (2013) Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers. Rice 6:1鈥?5. doi:10.鈥?186/鈥?939-8433-6-21 CrossRef
    Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164鈥?171CrossRef PubMed
    Fan C, Yu S, Wang C, Xing Y (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465鈥?72CrossRef PubMed
    Hu ZJ, He HH, Zhang SY, Sun F, Xin XY, Wang WX, Qian X, Yang JS, Luo XJ (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J Integr Plant Biol 54:979鈥?902CrossRef PubMed
    Hua JP, Xing YZ, Wu WR, Xu CG, Sun XL, Yu SB, Zhang QF (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574鈥?579
    Huang CF, Zhang GQ (2003) Development of position-specific microsatellite markers and molecular mapping of insect resistant genes in rice (Oryza sativa L). Mol Plant Breed 1:572鈥?74 (in Chinese)
    Huang N, Parco A, Mew T, Magpantay G, McCouch SR, Guiderdoni E, Xu J, Subudhi P, Angeles ER, Khush GS (1997) RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Mol Breed 3:105鈥?13CrossRef
    Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218鈥?26CrossRef PubMed
    Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083鈥?090PubMed Central CrossRef PubMed
    Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707鈥?11CrossRef PubMed
    Kato T, Segami S, Toriyama M, Kono I, Ando T, Yano M, Kitano H, Miura K, Iwasaki Y (2011) Detection of QTLs for grain length from large grain rice (Oryza sativa L.). Breed Sci 61:269鈥?74CrossRef
    Kazmi RH, Khan N, Willems LAJ, Van heusden A, Ligterink W, Hilhorst HWM (2012) Complex genetics controls natural variation among seed quality phenotypes in a recombinant inbred population of an interspecific cross between Solanum lycopersicum 脳 Solanum pimpinellifolium. Plant Cell Environ 35:929鈥?51
    Kesavan M, Song JT, Seo HS (2012) Seed size: a priority trait in cereal crops. Physiol Plant 147:113鈥?20CrossRef PubMed
    Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133:4305鈥?314CrossRef PubMed
    Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266鈥?269
    Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453鈥?65
    Li ZF, Wan JM, Xia JF, Zhai HQ (2003) Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genet Sin 30:251鈥?59PubMed
    Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920鈥?27CrossRef PubMed
    Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0. A tutorial and reference manual
    McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72鈥?4CrossRef
    McCouch S, Teytelman L, Xu Y, Lobos K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199鈥?07CrossRef PubMed
    Miu RW, Kei W, Jiang YF, Zhou SC, Wu YK, Li R (1992) Selection and breeding of the new rice cultivar Tesanai 2 with super high-yield, disease resistance and wide adaptability. Guangdong Agric Sci 4:7鈥? (in Chinese)
    Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:316鈥?19CrossRef
    Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res 22:1666鈥?680PubMed Central CrossRef PubMed
    Qiu X, Gong R, Tan Y, Yu S (2012) Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theor Appl Genet 125:1717鈥?726CrossRef PubMed
    Redo帽a ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957鈥?63CrossRef
    Shao G, Tang S, Luo J, Jiao G, Wei X, Tang A, Wu J, Zhuang J, Hu P (2010) Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. J Genet Genomics 37:523鈥?31CrossRef PubMed
    Shao G, Wei X, Chen M, Tang S, Luo J, Jiao G, Xie L, Hu P (2012) Allelic variation for a candidate gene for GS7, responsible for grain shape in rice. Theor Appl Genet 125:1303鈥?312CrossRef PubMed
    Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023鈥?028CrossRef PubMed
    Singh R, Singh AK, Sharma TR, Singh A, Singh NK (2011) Fine mapping of grain length QTLs on chromosomes 1 and 7 in Basmati rice (Oryza sativa L.). J Plant Biochem Biotechnol 21:157鈥?66CrossRef
    Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623鈥?30CrossRef PubMed
    Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyamaf T, Yamasaki M, Mori H, Inukai Y, Wu JZ, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA 112:76鈥?1PubMed Central CrossRef PubMed
    Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174鈥?83CrossRef PubMed
    Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Yhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101:823鈥?29
    Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa. L). Theor Appl Genet 100:697鈥?12CrossRef
    Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441鈥?452PubMed Central CrossRef PubMed
    Unnevehr LJ, Duff B, Juliano BO (1992) Consumer demand for rice grain quality. International Rice Research Institute, Manila, and International Development Research Center, Ottawa
    Van Ooijen, JW (2009) MapQTL庐6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V., Wageningen, Netherlands
    Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77鈥?8CrossRef PubMed
    Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110:1334鈥?346CrossRef PubMed
    Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239鈥?252PubMed Central CrossRef PubMed
    Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950鈥?54CrossRef PubMed
    Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199鈥?209CrossRef PubMed
    Yoshida S, Ikegami M, Kuze J, Sawada K, Hashimoto Z, Ishii T, Nakamura C, Kamijima O (2002) QTL analysis for plant and grain characters of sake
    ewing rice using a doubled haploid population. Breed Sci 52:309鈥?17CrossRef
    You FM, Huo NX, Gu YQ, Luo MC, Ma YQ, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253CrossRef
    Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226鈥?231PubMed Central CrossRef PubMed
    Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1:3鈥?0CrossRef
    Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109:21534鈥?1539PubMed Central CrossRef PubMed
    Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL聽脳聽environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799鈥?08CrossRef
  • 作者单位:Dilin Liu (1) (2)
    Meihua Kang (1) (2) (3)
    Feng Wang (1) (2)
    Wuge Liu (1) (2)
    Chongyun Fu (1) (2)
    Jinhua Li (1) (2)
    Manshan Zhu (1) (2)
    Xueqin Zeng (1) (2)
    Yilong Liao (1) (2)
    Zhenrong Liu (1) (2)
    Huijun Huang (1) (2)

    1. Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
    2. Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
    3. Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5060
文摘
Grain size is a major component of rice grain yield and grain quality. Here we conducted genetic analysis for grain size using an F8 recombinant inbred lines population derived from the cross between two elite indica parents, the slender-grain line Taifeng B with good grain quality and the high-yielding short-grain cultivar Tesanai 2. Strong positive association between hundred-grain weight and grain width was observed, but significant negative correlation was found between grain length and grain width. A total of 36 QTLs for grain weight, grain length, grain width, grain length/width ratio and grain thickness were identified and they explained a total phenotypic variance ranging from 53.6 to 75.2 %. Of them, 6 QTLs were reported for the first time and they are likely novel genetic loci. Moreover, QTLs for grain size tend to form clusters at similar locations. Three of them were detected on chromosome 3, 5, and 7, locating at the regions of the previously reported loci GS3, qSW5/GW5 and GS7, respectively. The allele variance of the above three loci between the parental lines was verified by using functional marker and genome re-sequencing. The major QTLs and QTL clusters discovered in this study are valuable for improvement of rice grain yield and quality through marker-assisted selection. The repeatedly detected QTLs and newly identified loci lay foundation for further fine mapping and map-based cloning. Keywords Rice (Oryza sativa L) Grain size QTL mapping Pleiotropic effect Marker-assisted selection (MAS)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700