Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis
详细信息    查看全文
  • 作者:Yin Yang ; Feng Huang ; Thomas Huber ; Xun-Cheng Su
  • 关键词:Protein labeling ; 8 ; Hydroxyquinoline ; Paramagnetic NMR spectroscopy ; Pseudocontact shift ; Paramagnetic relaxation enhancement
  • 刊名:Journal of Biomolecular NMR
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:64
  • 期:2
  • 页码:103-113
  • 全文大小:1,702 KB
  • 参考文献:Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford
    Alacid E, Najera C (2008) Aqueous sodium hydroxide promoted cross-coupling reactions of alkenyltrialkoxysilanes under ligand-free conditions. J Org Chem 73:2315–2322CrossRef
    Arena G, Fattorusso R, Grasso G, Grasso GI, Isernia C, Malgieri G, Milardi D, Rizzarelli E (2011) Zinc(II) complexes of ubiquitin: speciation, affinity and binding features. Chem Eur J 17:11596–11603CrossRef
    Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR (2003) A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas syringae. J Am Chem Soc 125:7200–7208CrossRef
    Arnesano F, Banci L, Piccoli M (2005) NMR structures of paramagnetic metalloproteins. Q Rev Biophys 38:167–219CrossRef
    Arnesano F, Belviso BD, Caliandro R, Falini G, Fermani S, Natile G, Siliqi D (2011) Crystallographic analysis of metal-ion binding to human ubiquitin. Chem Eur J 17:1569–1678CrossRef
    Bertini I, Luchinat C (1984) High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv Inorg Biochem 6:71–111
    Bertini I, Luchinat C (1996) NMR of paramagnetic substances. Coord Chem Rev 150:1–243CrossRef
    Bertini I, Luchinat C (1999) New applications of paramagnetic NMR in chemical biology. Curr Opin Chem Biol 3:145–151CrossRef
    Bertini I, Turano P, Vila AJ (1993) Nuclear magnetic resonance of metalloproteins. Chem Rev 93:2833–2932CrossRef
    Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectr 40:249–273CrossRef
    Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 6:1536–1549CrossRef
    Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in paramagnetic NMR of metalloproteins. Dalton 3782–3790
    Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC (2014) Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. J Biomol NMR 59:251–261CrossRef
    Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139CrossRef
    Donaire A, Salgado J, Moratal JM (1998) Determination of the magnetic axes of cobalt(II) and nickel(II) azurins from 1H NMR data: influence of the metal and axial ligands on the origin of magnetic anisotropy in blue copper proteins. Biochemistry 37:8659–8673CrossRef
    Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231CrossRef
    Falini G, Fermani S, Tosi G, Arnesano F, Natile G (2008) Structural probing of Zn(II), Cd(II) and Hg(II) binding to human ubiquitin. Chem Commun 5980–5962
    Geraldes CF (1993) Lanthanide shift reagents. Methods Enzymol 227:43–78CrossRef
    Geraldes CF, Luchinat C (2003) Lanthanides as shift and relaxation agents in elucidating the structure of proteins and nucleic acids. Met Ions Biol Syst 40:513–588
    Gochin M (1998) Nuclear magnetic resonance characterization of a paramagnetic DNA-drug complex with high spin cobalt; assignment of the 1H and 31P NMR spectra, and determination of electronic, spectroscopic and molecular properties. J Biomol NMR 12:243–257CrossRef
    Huang F, Pei YY, Zuo HH, Chen JL, Yang Y, Su XC (2013) Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag. Chem Eur J 19:17141–17149CrossRef
    Jensen MR, Led JJ (2006) Metal–protein interactions: structure information from Ni(II)-induced pseudocontact shifts in a native nonmetalloprotein. Biochemistry 45:8782–8787CrossRef
    Jensen MR, Lauritzen C, Dahl SW, Pedersen J, Led JJ (2004) Binding ability of a HHP-tagged protein towards Ni2+ studied by paramagnetic NMR relaxation: the possibility of obtaining long-range structure information. J Biomol NMR 29:175–185CrossRef
    Jia X, Maleckis A, Huber T, Otting G (2011) 4,4′-Dithiobisdipicolinic acid: a small and convenient lanthanide binding tag for protein NMR spectroscopy. Chem Eur J 17:6830–6836CrossRef
    Johnston WD, Freiser H (1952) Structure and behavior of organic analytical reagents. III. Stability of chelates of 8-hydroxyquinoline and analogous reagents. J Am Chem Soc 74:5239–5242CrossRef
    Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) Probing copper binding to the prion protein using diamagnetic nickel and 1H NMR: the unstructured N terminus facilitates the coordination of six copper ions at physiological concentrations. J Mol Biol 346:1393–1407CrossRef
    Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog NMR Spectr 59:360–389CrossRef
    La Mar GN, Horrocks WD, Holm RH (1973) NMR of paramagnetic molecules. Elsevier, Amsterdam
    Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131:2481–2483CrossRef
    Li QF, Yang Y, Maleckis A, Otting G, Su XC (2012) Thiol-ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem Commun 48:2704–2706CrossRef
    Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J (2013) Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl 52:4805–4809CrossRef
    Liu WM, Overhand M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273–274:2–12CrossRef
    Loh CT, Graham B, Abdelkader EH, Tuck KL, Otting G (2015) Generation of pseudocontact shifts in proteins with lanthanides using small “clickable” nitrilotriacetic acid and iminodiacetic acid tags. Chem Eur J 21:5084–5092CrossRef
    Ma FH, Chen JL, Li QF, Zuo HH, Huang F, Su XC (2014) Kinetic assay of the Michael addition-like thiol-ene reaction and insight into protein bioconjugation. Chem Asian J 9:1808–1816CrossRef
    Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 136:3752–3755CrossRef
    Man B, Su XC, Liang H, Simonsen S, Huber T, Messerle BA, Otting G (2010) 3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy. Chem Eur J 16:3827–3832CrossRef
    Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75CrossRef
    Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D (2015) Mn(II) tags for DEER distance measurements in proteins via C–S attachment. Dalton Trans 44:20812–20816CrossRef
    Nguyen THD, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G (2011) Generation of pseudocontact shifts in protein NMR spectra with a genetically encoded cobalt(II)-binding amino acid. Angew Chem Int Ed 50:692–694CrossRef
    Otting G (2008) Prospects for the lanthanides in structural biology by NMR. J Biomol NMR 42:1–9CrossRef
    Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405CrossRef
    Park SH, Wang VS, Radoicic J, De Angelis AA, Berkamp S, Opella SJ (2015) Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA). J Biomol NMR 61:185–196CrossRef
    Petitjean A, Kyritsakas N, Lehn JM (2005) Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding. Chem Eur J 11:6818–6828CrossRef
    Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein–ligand complexes by lanthanide labelling. Acc Chem Res 40:206–212CrossRef
    Qi A, Gross A, Jeschke G, Godt A, Drescher M (2014) Gd(III)-PyMTA label is suitable for in-cell EPR. J Am Chem Soc 136:15366–15378CrossRef
    Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural and biological studies of the ubiquitin system: chemically synthesized and native ubiquitin fold into identical three-dimensional structures. Biochem J 299:151–158CrossRef
    Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C (2014) FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. J Biomol NMR 61:21–34CrossRef
    Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16CrossRef
    Shishmarev D, Otting G (2013) How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study. J Biomol NMR 56:203–216CrossRef
    Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189CrossRef
    Stanton-Cook MJ, Su XC, Otting G, Huber T. http://​compbio.​anu.​edu.​au/​mscook/​PPT/​
    Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487CrossRef
    Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B (2011) Engineering of a bis-chelator motif into a protein α-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem Commun (Camb) 47:7368–7370CrossRef
    Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335CrossRef
    Yagi H, Maleckis A, Otting G (2013) A systematic study of labelling an α-helix in a protein with a lanthanide using IDA-SH or NTA-SH tags. J Biomol NMR 55:157–166CrossRef
    Yang Y, Li QF, Cao C, Huang F, Su XC (2013) Site-specific labeling of proteins with a chemically stable, high-affinity tag for protein study. Chem Eur J 19:1097–1103CrossRef
  • 作者单位:Yin Yang (1)
    Feng Huang (1)
    Thomas Huber (2)
    Xun-Cheng Su (1)

    1. State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
    2. Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Polymer Sciences
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-5001
文摘
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data. Keywords Protein labeling 8-Hydroxyquinoline Paramagnetic NMR spectroscopy Pseudocontact shift Paramagnetic relaxation enhancement

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700