Method for six-legged robot stepping on obstacles by indirect force estimation
详细信息    查看全文
  • 作者:Yilin Xu ; Feng Gao ; Yang Pan ; Xun Chai
  • 关键词:robot ; parallel mechanism ; force estimation ; obstacle
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:29
  • 期:4
  • 页码:669-679
  • 全文大小:2,218 KB
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Electronics and Microelectronics, Instrumentation;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2192-8258
  • 卷排序:29
文摘
Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot’s foot tips.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700