Research progress in ZnO single-crystal: growth, scientific understanding, and device applications
详细信息    查看全文
  • 作者:Feng Huang (1)
    Zhang Lin (2)
    Wenwen Lin (1)
    Jiye Zhang (1)
    Kai Ding (1)
    Yonghao Wang (1)
    Qinghong Zheng (1)
    Zhibing Zhan (1)
    Fengbo Yan (1)
    Dagui Chen (1)
    Peiwen Lv (1)
    Xian Wang (1)
  • 关键词:ZnO ; ZnO single crystal ; ZnO ; based photoelectronic devices ; Photocatalysis ; Diluted magnetic semiconductor
  • 刊名:Chinese Science Bulletin
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:59
  • 期:12
  • 页码:1235-1250
  • 全文大小:1,866 KB
  • 参考文献:1. 脰zg眉r 脺, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301
    2. Look DC (2005) Electrical and optical properties of p-type ZnO. Semicond Sci Technol 20:S55鈥揝61
    3. Hwang DK, Kang SH, Lim JH et al (2005) P-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl Phys Lett 86:222101
    4. Tang ZK, Wong GKL, Yu P et al (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film. Appl Phys Lett 72:3270鈥?272
    5. Bagnall DM, Chen YF, Zhu Z et al (1997) Optically pumped lasing of ZnO at room temperature. Appl Phys Lett 70:2230鈥?232
    6. Tsukazaki A, Ohtomo A, Onuma T et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42鈥?6
    7. Dadgar A, Krtschil A, Diez A, et al. In: Third International Conference on Materials for Advanced Technologies, Singapore 2005. paper N-6-OR12
    8. Meyer BK, Alver H, Hofmann DM et al (2004) Bound exciton and donor鈥揳cceptor pair recombinations in ZnO. Phys Status Solidi B 241:231鈥?60
    9. Agarwal G, Nause JE, Hill DN (1998) The scope of the ZnO growth. Mater Res Soc Symp Proc 512:41鈥?6
    10. Reynolds DC, Litton CW, Look DC et al (2004) High-quality, melt-grown ZnO single crystals. J Appl Phys 95:4802鈥?805
    11. Nause J, Nemeth B (2005) Pressurized melt growth of ZnO boules. Semicond Sci Technol 20:S45鈥揝48
    12. Shiloh M, Gutman J (1971) Growth of ZnO single crystals by chemical vapour transport. J Cryst Growth 11:105鈥?84
    13. Piekarczyk W, Gazda S, Niemyski T (1972) The growth of zinc oxide cryst als by chemical transport. J Cryst Growth 12:272鈥?76
    14. Matsumoto K, Konemura K, Shimaoka G (1985) Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents. J Cryst Growth 71:99鈥?03
    15. Matsumoto K, Shimaoka G (1988) Crystal growth of ZnO by chemical transport. J Cryst Growth 86:410鈥?14
    16. Matsumoto K, Noda K (1990) Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent. J Cryst Growth 102:137鈥?40
    17. Look DC, Reynolds DC, Sizelove JR et al (1998) Electrical properties of bulk ZnO. Solid State Comm 105:399鈥?01
    18. Zhao YW, Dong ZY, Wei XC et al (2006) Defects and their influence on properties of bulk ZnO single crystal. Chin J Semi 27:336鈥?39
    19. Nielsen JW, Dearborn EF (1960) The growth of large single crystals of zinc oxide. J Phys Chem 64:1762鈥?763
    20. Kleber W, Mlodoch R (1966) 脺ber die Synthese von Zinkit-Einkristallen. Kristall Techn 1:249鈥?59
    21. Chase AB, Osmer J (1967) Localized cooling in flux crystal growth. J Am Ceram Soc 50:325鈥?28
    22. Wanklyn BM (1970) The growth of ZnO crystals from phosphate and vanadate fluxes. J Cryst Growth 7:107鈥?08
    23. Oka K, Shibata H, Kashiwaya S (2002) Crystal growth of ZnO. J Cryst Growth 509鈥?13:237鈥?39
    24. Ehrentraut D, Sato H, Kagamitani Y et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Charact Mater 52:280鈥?35
    25. Dem鈥檡anets LN, Kostomarov DV, Kuz鈥檓ina IP et al (2002) Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr Rep 47:S86鈥揝98
    26. Laudise RA, Ballman AA (1960) Hydrothermal synthesis of zinc oxide and zinc sulfide. J Phys Chem 64:688鈥?91
    27. Laudise RA, Kolb ED, Caporaso AJ (1964) Hydrothermal growth of large sound crystals of zinc oxide. J Am Ceram Soc 47:9鈥?2
    28. Kolb ED, Coriell AS, Laudise RA et al (1967) The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures. Mater Res Bull 2:1099鈥?106
    29. Dem鈥檡anets LN, Lyutin VI (2008) Status of hydrothermal growth of bulk ZnO: latest issues and advantages. J Cryst Growth 310:993鈥?99
    30. Zhang CL, Zhou WN, Hang Y et al (2008) Hydrothermal growth and characterization of ZnO crystals. J Cryst Growth 310:1819鈥?822
    31. Lin WW, Chen DG, Zhang JY et al (2009) Hydrothermal growth of ZnO single crystals with high carrier mobility. Cryst Growth Des 9:4378鈥?383
    32. Chen YF, Bagnall D, Yao T (2000) ZnO as a novel photonic material for the UV region. Mat Sci Eng B Solid 75:190鈥?98
    33. Chiou YZ, Su YK, Chang SJ et al (2002) Transparent tin electrodes in gan metal鈥搒emiconductor鈥搈etal ultraviolet photodetectors. Jpn J Appl Phys 41:3643鈥?645
    34. Chen KJ, Hung FY, Chang SJ et al (2009) Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J Alloys Compd 479:674鈥?77
    35. Sandvik P, Mi K, Shahedipour F et al (2001) Al / x Ga1鈭?em class="a-plus-plus">x N for solar-blind UV detectors. J Cryst Growth 231:366鈥?70
    36. Zheng QH, Huang F, Huang J et al (2012) High-responsivity solar-blind photodetector based on Mg0.46Zn0.54O thin film. IEEE Electr Device L 33:1033鈥?035
    37. Ozbay E, Biyikli N, Kimukin I et al (2004) High-performance solar-blind photodetectors based on Al / x Ga1鈭?em class="a-plus-plus">x N heterostructures. IEEE J Sel Topics Quantum Electron 10:742鈥?51
    38. Li L, Lee PS, Yan C et al (2010) Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22:5145鈥?149
    39. Ohtomo A, Kawasaki M, Koida T et al (1998) MgxZn1鈭抶O as a II鈥揤I widegap semiconductor alloy. Appl Phys Lett 72:2466鈥?468
    40. Takeuchi I, Yang W, Chang KS et al (2003) Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in Mg / x Zn1鈭?em class="a-plus-plus">x O composition spreads. J Appl Phys 94:7336鈥?340
    41. Endo H, Kikuchi M, Ashioi M et al (2008) High-sensitivity mid-ultraviolet Pt/Mg0.59Zn0.41O Schottky photodiode on a ZnO single Crystal substrate. Appl Phys Express 1:051201
    42. Zheng QH, Huang F, Ding K et al (2011) MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates. Appl Phys Lett 98:221112
    43. Aoki T, Hatanaka Y, Look DC (2000) ZnO diode fabricated by excimer-laser doping. Appl Phys Lett 76:3257鈥?258
    44. Guo X, Choi JH, Tabata H et al (2001) Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn J Appl Phys 40:L177鈥揕180
    45. Wang H, Kang BS, Chen J et al (2006) Band-edge electroluminescence from N+-implanted bulk ZnO. Appl Phys Lett 80:102107
    46. Zeng YJ, Ye ZZ, Lu YF et al (2008) Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO. J Phys D Appl Phys 41:165104
    47. Asahara H, Takamizu D, Inokuchi A et al (2010) Light-emitting diode based on ZnO by plasma-enhanced metal鈥搊rganic chemical vapor deposition employing microwave excited plasma. Jpn J Appl Phys 49:04DG14
    48. Nakahara K, Akasaka S, Yuji H et al (2010) Nitrogen doped Mg / x Zn1鈭?em class="a-plus-plus">x O/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl Phys Lett 97:013501
    49. Kato H, Yamamuro T, Ogawa A et al (2011) Impact of mixture gas plasma of N2 and O2 as the N source on ZnO-based ultraviolet light-emitting diodes fabricated by molecular beam epitaxy. Appl Phys Express 4:091105
    50. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69鈥?6
    51. He S, Zhang ST, Lu J et al (2011) Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate. Chem Commun 47:10797鈥?0799
    52. Ohno T, Bai L, Hisatomi T et al (2012) Photocatalytic water splitting using modified GaN: ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134:8254鈥?259
    53. Xu LP, Hu YL, Pelligra C et al (2009) ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem Mater 21:2875鈥?885
    54. Jiang TF, Xie TF, Zhang Y et al (2010) Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys Chem Chem Phys 12:15476鈥?5481
    55. Pan J, liu G, Lu GQ et al (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133鈥?137
    56. Jang ES, Won JH, Hwang SJ et al (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309鈥?312
    57. Wang YH, Huang F, Pan DM et al (2009) Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals. Chem Commun 44:6783鈥?785
    58. Zhan ZB, Wang YH, Lin Z et al (2011) Study of interface electric field affecting the photocatalysis of ZnO. Chem Commun 47:4517鈥?519
    59. Pan H, Yi JB, Shen L et al (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99:127201
    60. Dietl T, Ohno H (2001) Ferromagnetism in III鈥揤 and II鈥揤I semiconductor structures. Physica E 9:185鈥?93
    61. Dietl T (2010) A 10-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965鈥?74
    62. Dietl T, Haury A, d鈥橝ubign茅 YM (1997) Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys Rev B 55:R3347鈥揜3350
    63. K枚nig J, Lin HH, MacDonald AH (2000) Theory of diluted magnetic semiconductor ferromagnetism. Phys Rev Lett 84:5628鈥?631
    64. Sato K, Katayama-Yoshida H (2002) First principles materials design for semiconductor spintronics. Semicond Sci Technol 17:367鈥?76
    65. Kaminski A, Das Sarma S (2002) Microstructural and magnetic properties of ZnO: TM (TM聽=聽Co, Mn) diluted magnetic semiconducting nanoparticles. Phys Rev Lett 88:247202
    66. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173鈥?79
    67. Liu XC, Shi EW, Chen ZZ et al (2008) Effect of donor localization on the magnetic properties of Zn鈥揅o鈥揙 system. Appl Phys Lett 92:042502
    68. Zhang HW, Shi EW, Chen ZZ et al (2006) Magnetism in Zn1鈭?em class="a-plus-plus">x Mn / x O crystal prepared by hydrothermal method. Solid State Commu 137:272鈥?74
    69. Li W, Kang QQ, Lin Z et al (2006) Paramagnetic anisotropy of Co-doped ZnO single crystal. Appl Phys Lett 89:112507
    70. Neumark GF (1998) Achievement of well conducting wide band-gap semiconductors: role of solubility and of nonequilibrium impurity incorporation. Phys Rev Lett 62:1800鈥?803
    71. Chadi DJ (1994) Doping in ZnSe, ZnTe, MgSe, and MgTe wide-band-gap semiconductors. Phys Rev Lett 72:534鈥?37
    72. Zhang SB, Wei SH, Zunger A (2000) Microscopic origin of the phenomenological equilibrium 鈥渄oping limit rule鈥?in n-type III鈥揤 semiconductors. Phys Rev Lett 84:1232鈥?235
    73. Minami T, Sato H, Nanto H et al (1995) Group III impurity doped zinc oxide thin films prepared by rf magnetron sputtering. Jpn J Appl Phys 24:L781鈥揕784
    74. Zhang SB, Wei SH, Zunger A (1998) A phenomenological model for systematization and prediction of doping limits in II鈥揤I and I鈥揑II鈥揤I2 compounds. J Appl Phys 83:3192鈥?196
    75. Laks DB, Van de Walle CG, Neumark GF et al (1993) Acceptor doping in ZnSe versus ZnTe. Appl Phys Lett 63:1375鈥?377
    76. Kohan AF, Ceder G, Morgan D et al (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019鈥?5024
    77. Van de Walle CG (2001) Defect analysis and engineering in ZnO. Phys B 308鈥?10:899鈥?03
    78. Cox SFJ, Davis EA, Cottrell SP et al (2001) Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys Rev Lett 86:2601鈥?604
    79. Strzhemechny YM, Mosbacker HL, Look DC et al (2004) Remote hydrogen plasma doping of single crystal ZnO. Appl Phys Lett 84:2545鈥?547
    80. Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett 85:1012鈥?015
    81. Lehmann W (1966) Edge emission of n-type conducting ZnO and CdS. Solid-State Electron 9:1107鈥?110
    82. Sans JA, Sanchez-Royo JF, Segura A et al (2009) Chemical effects on the optical band-gap of heavily doped ZnO: / MIII ( / M聽=聽Al, Ga, In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations. Phys Rev B 79:195105
    83. Myong SY, Baik SJ, Lee CH et al (1997) Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn J Appl Phys 36:L1078鈥揕1081
    84. Sans JA, Martinez-Criado G, Pellicer-Porres et al (2007) Thermal instability of electrically active centers in heavily Ga-doped ZnO thin films: X-ray absorption study of the Ga-site configuration. Appl Phys Lett 91:221904
    85. Kumar M, Lee BT (2008) Improvement of electrical and optical properties of Ga and N co-doped p-type ZnO thin films with thermal treatment. Appl Surf Sci 254:6446鈥?449
    86. Lu ZL, Zou WQ, Xu MX et al (2009) Structural and electrical properties of single crystalline a-doped ZnO thin films grown by molecular beam epitaxy. Chin Phys Lett 26:116102
    87. Kim JH, Du Ahn B, Lee CH et al (2006) Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J Appl Phys 100:113515
    88. Kang JH, Kim DW, Lee MH et al (2010) Damp heat stability of ZnO: Ga thin films on glass substrate. J Korean Phys Soc 57:1081鈥?085
    89. Lin WW, Ding K, Lin Z et al (2010) The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility. Cryst Eng Comm 13:3338鈥?341
    90. Zhan ZB, Zhang JY, Zheng QH et al (2011) Strategy for preparing Al-doped ZnO Thin film with high mobility and high stability. Cryst Growth Des 11:21鈥?5
    91. Liu HF, Chua SJ, Hu GX et al (2007) Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J Appl Phys 102:083529
    92. Kim KH, Park KC, Ma DY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764鈥?772
    93. Lany S, Zunger A (2007) Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys Rev Lett 98:045501
    94. Lin BX, Fu ZX, Jia YB (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943鈥?45
    95. Schwartz DA, Gamelin DR (2004) Reversible 300聽K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115鈥?119
    96. Pei ZL, Sun C, Tan MH et al (2001) Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films. J Appl Phys 90:3432鈥?436
    97. Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO. Phys Rev B 66:073202
    98. Lee EC, Kim YS, Jin YG et al (2001) Compensation mechanism for N acceptors in ZnO. Phys Rev B 64:085120
    99. Zhang BY, Yao B, Li YF et al (2010) Investigation on the formation mechanism of p-type Li鈥揘 dual-doped ZnO. Appl Phys Lett 97:222101
    100. Venkatesh S, Rao R (2010) Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Appl Phys Lett 96:232504
    101. Zhang LQ, Zhang YZ, Ye ZZ et al (2012) The fabrication of Na doped p-type Zn1鈭?em class="a-plus-plus">x Mg / x O films by pulsed laser deposition. Appl Phys A 106:191鈥?96
    102. Tang K, Gu SL, Wu KP et al (2010) Tellurium assisted realization of p-type N-doped ZnO. Appl Phys Lett 96:242101
    103. Sanmyo M, Tomita Y, Kobayashi K (2003) Preparation of p-type ZnO films by doping of Be鈥揘 bonds. Chem Mater 15:819鈥?21
    104. Mohanta SK, Nakamura A, Temmyo J (2011) Nitrogen and copper doping in Mg / x Zn1鈭?em class="a-plus-plus">x O films and their impact on p-type conductivity. J Appl Phys 110:013524
    105. Janotti A, Snow E, Van de Walle CG (2009) A pathway to p-type wide-band-gap semiconductors. Appl Phys Lett 95:172109
    106. Chu S, Zhao JZ, Zuo Z et al (2011) Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light emitting diode. J Appl Phys 109:123110
    107. Friedrich F, Sieber I, Klimm C et al (2011) Sb-doping of ZnO: phase segregation and its impact on p-type doping. Appl Phys Lett 98:131902
    108. Xiao ZY, Liu YC, Mu R et al (2008) Stability of p-type conductivity in nitrogen-doped ZnO thin film. Appl Phys Lett 92:052106
    109. Chen XY, Zhang ZZ, Yao B et al (2011) Effect of compressive stress on stability of N-doped p-type ZnO. Appl Phys Lett 99:091908
  • 作者单位:Feng Huang (1)
    Zhang Lin (2)
    Wenwen Lin (1)
    Jiye Zhang (1)
    Kai Ding (1)
    Yonghao Wang (1)
    Qinghong Zheng (1)
    Zhibing Zhan (1)
    Fengbo Yan (1)
    Dagui Chen (1)
    Peiwen Lv (1)
    Xian Wang (1)

    1. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou, 350002, China
    2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou, 350002, China
  • ISSN:1861-9541
文摘
Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor photocatalysis, and diluted magnetic semiconductors. Due to the undisputed lattice integrity, ZnO single crystals are essential for the fabrication of high-quality ZnO-based photoelectronic devices, and also believed to be ideal research subjects for understanding the underlying mechanisms of semiconductor photocatalysis and diluted magnetic semiconductors. This review, which is organized in two main parts, introduces the recent progress in growth, basic characterization, and device development of ZnO single crystals, and some related works in our group. The first part begins from the growth of ZnO single crystal, and summarizes the fundamental and applied investigations based on ZnO single crystals. These works are composed of the fabrication of homoepitaxial ZnO-based photoelectronic devices, the research on the photocatalysis mechanism, and dilute magnetic mechanism. The second part describes the fabrication of highly thermostable n-type ZnO with high mobility and high electron concentration through intentional doping. More importantly, in this part, a conceptual approach for fabricating highly thermostable p-type ZnO materials with high mobility through an integrated three-step treatment is proposed on the basis of the preliminary research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700