Fusion Peptides CPU1 and CPU2 Inhibit Matrix Metalloproteinases and Protect Mice from Endotoxin Shock Within a Strict Time Window
详细信息    查看全文
  • 作者:Zheng Qiu ; Fengguo Zhang ; Chengxin Gong ; Hanmei Xu ; Jialiang Hu
  • 关键词:endotoxin shock ; matrix metalloproteinase ; peptide inhibitor ; indirect competitive ELISA ; zymography
  • 刊名:Inflammation
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:38
  • 期:6
  • 页码:2092-2104
  • 全文大小:1,417 KB
  • 参考文献:1.Bone, R.C. 1991. The pathogenesis of sepsis. Annals of Internal Medicine 115: 457鈥?69.CrossRef PubMed
    2.Parrillo, J.E. 1993. Mechanisms of disease: pathogenetic mechanisms of septic shock. New England Journal of Medicine 328: 1471鈥?417.CrossRef PubMed
    3.Beutler, B. 2002. Toll-like receptors: how they work and what they do. Current Opinion in Hematology 9: 2鈥?0.CrossRef PubMed
    4.Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, and S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. Journal of Immunology 162: 3749鈥?752.
    5.Rothe, J., W. Lesslauer, H. Lotscher, Y. Lang, P. Koebel, F. Kontgen, A. Althage, R. Zinkernagel, M. Steinmetz, and H. Bluethmann. 1993. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798鈥?02.CrossRef PubMed
    6.Pfeffer, K., T. Matsuyama, T.M. Kundig, A. Wakeham, K. Kishihara, A. Shahinian, K. Wiegmann, P.S. Ohashi, M. Kronke, and T.W. Mak. 1993. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457鈥?67.CrossRef PubMed
    7.Car, B.D., V.M. Eng, B. Schnyder, L. Ozmen, S. Huang, P. Gallay, D. Heumann, M. Aguet, and B. Ryffel. 1994. Interferon gamma receptor deficient mice are resistant to endotoxic shock. Journal of Experimental Medicine 179: 1437鈥?444.CrossRef PubMed
    8.Riedemann, N.C., R.F. Guo, K.D. Bernacki, J.S. Reuben, I.J. Laudes, T.A. Neff, H. Gao, C. Speyer, V.J. Sarma, F.S. Zetoune, and P.A. Ward. 2003. Regulation by C5a of neutrophil activation during sepsis. Immunity 19: 193鈥?02.CrossRef PubMed
    9.Dubois, B., S. Starckx, A. Pagenstecher, J. van den Oord, B. Arnold, and G. Opdenakker. 2002. Gelatinase B deficiency protects against endotoxin shock. European Journal of Immunology 32: 2163鈥?171.CrossRef PubMed
    10.Abraham, E., M.R. Gyetko, K. Kuhn, J. Arcaroli, D. Strassheim, J.S. Park, S. Shetty, and S. Idell. 2003. Urokinase-type plasminogen activator potentiates lipopolysaccharide-induced neutrophil activation. Journal of Immunology 170: 5644鈥?651.CrossRef
    11.Barrett, A.J., N.D. Rawlings, and J.F. Woessner. 2004. Handbook of Proteolytic enzymes (second edition). London: Elsevier Academic Press.
    12.Sternlicht, M.D., and Z. Werb. 2001. How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology 17: 463鈥?16.PubMedCentral CrossRef PubMed
    13.Overall, C.M., and C. Lopez-Otin. 2002. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Reviews Cancer 2: 657鈥?72.CrossRef PubMed
    14.Qiu, Z., J. Hu, P.E. Van den Steen, and G. Opdenakker. 2012. Targeting matrix metalloproteinases in acute inflammatory shock syndromes. Combinatorial Chemistry & High Throughput Screening 15: 555鈥?70.CrossRef
    15.Pfefferkorn, T., and G.A. Rosenberg. 2003. Closure of the blood
    ain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 34: 2025鈥?030.CrossRef PubMed
    16.Rosenberg, G.A., E.Y. Estrada, and S. Mobashery. 2007. Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood
    ain barrier opening in rodents: differences in response based on strains and solvents. Brain Research 1133: 186鈥?92.PubMedCentral CrossRef PubMed
    17.Solorzano, C.C., R. Ksontini, J.H. Pruitt, T. Auffenberg, C. Tannahill, R.E. Galardy, G.P. Schultz, S.L. MacKay, E.M. Copeland, and L.L. Moldawer. 1997. A matrix metalloproteinase inhibitor prevents processing of tumor necrosis factor alpha (TNF alpha) and abrogates endotoxin-induced lethality. Shock 7: 427鈥?31.CrossRef PubMed
    18.Paemen, L., E. Martens, K. Norga, S. Masure, E. Roets, J. Hoogmartens, and G. Opdenakker. 1996. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochemical Pharmacology 52: 105鈥?11.CrossRef PubMed
    19.Shapira, L., W.A. Soskolne, Y. Houri, V. Barak, A. Halabi, and A. Stabholz. 1996. Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion. Infection and Immunity 64: 825鈥?28.PubMedCentral PubMed
    20.Ramamurthy, N.S., B.R. Rifkin, R.A. Greenwald, J.W. Xu, Y. Liu, G. Turner, L.M. Golub, and A.T. Vernillo. 2002. Inhibition of matrix metalloproteinase-mediated periodontal bone loss in rats: a comparison of 6 chemically modified tetracyclines. Journal of Periodontology 73: 726鈥?34.CrossRef PubMed
    21.Kr眉ger, A., R.E. Kates, and D.R. Edwards. 2010. Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. Biochimica et Biophysica Acta 1803: 95鈥?02.CrossRef PubMed
    22.Weiss, S.J. 1989. Tissue destruction by neutrophils. New England Journal of Medicine 320: 365鈥?76.CrossRef PubMed
    23.Paemen, L., P.M. Jansen, P. Proost, J. Van Damme, G. Opdenakker, E. Hack, and F.B. Taylor. 1997. Induction of gelatinase B and MCP-2 in baboons during sublethal and lethal bacteraemia. Cytokine 9: 412鈥?15.CrossRef PubMed
    24.Pugin, J., M.C. Widmer, S. Kossodo, C.M. Liang, H.L. Preas, and A.F. Suffredini. 1999. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. American Journal of Respiratory Cell and Molecular Biology 20: 458鈥?64.CrossRef PubMed
    25.Hu, J., P. Fiten, P.E. Van den Steen, P. Chaltin, and G. Opdenakker. 2005. Simulation of evolution-selected propeptide by high-throughput selection of a peptidomimetic inhibitor on a capillary DNA sequencer platform. Analytical Chemistry 77: 2116鈥?124.CrossRef PubMed
    26.Hu, J., V. Dubois, P. Chaltin, P. Fiten, C. Dillen, P.E. Van den Steen, and G. Opdenakker. 2006. Inhibition of lethal endotoxin shock with an L-pyridylalanine containing metalloproteinase inhibitor selected by high-throughput screening of a new peptide library. Combinatorial Chemistry & High Throughput Screening 9: 599鈥?11.CrossRef
    27.Hu, J., P.E. Van den Steen, C. Dillen, and G. Opdenakker. 2005. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock. Biochemical Pharmacology 70: 535鈥?44.CrossRef PubMed
    28.Hu, J., M. Yan, C. Pu, J. Wang, P.E. Van den Steen, G. Opdenakker, and H. Xu. 2014. Chemically synthesized matrix metalloproteinase and angiogenesis-inhibiting peptides as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry 14: 483鈥?94.CrossRef PubMed
    29.Wickstr枚m, S.A., K. Alitalo, and J. Keski-Oja. 2004. An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. Journal of Biological Chemistry 279: 20178鈥?0185.CrossRef PubMed
    30.Knight, C.G., F. Willenbrock, and G. Murphy. 1992. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Letters 296: 263鈥?66.CrossRef PubMed
    31.Hu, J., P.E. Van den Steen, M. Houde, T.T. Ilenchuk, and G. Opdenakker. 2004. Inhibitors of gelatinase B/matrix metalloproteinase-9 activity comparison of a peptidomimetic and polyhistidine with single-chain derivatives of a neutralizing monoclonal antibody. Biochemical Pharmacology 67: 1001鈥?009.CrossRef PubMed
    32.Paemen, L., E. Martens, S. Masure, and G. Opdenakker. 1995. Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two-site ELISA and inhibition of enzymatic activity. European Journal of Biochemistry 234: 759鈥?65.CrossRef PubMed
    33.Granelli-Piperno, A., and E. Reich. 1978. A study of proteases and protease-inhibitor complexes in biological fluids. Journal of Experimental Medicine 148: 223鈥?34.PubMedCentral CrossRef PubMed
    34.Vandooren, J., N. Geurts, E. Martens, P.E. Van den Steen, and G. Opdenakker. 2013. Zymography methods for visualizing hydrolytic enzymes. Nature Methods 10: 211鈥?20.CrossRef PubMed
    35.Qiu, Z., Chen, J., Xu, H., Van den Steen, P. E., Opdenakker, G., Wang, M., Hu, J. (2014) Inhibition of neutrophil collagenase/MMP-8 and gelatinase B/MMP-9 and protection against endotoxin shock. Journal of Immunological Research. doi:10.鈥?155/鈥?014/鈥?47426 .
    36.Descamps, F.J., E. Martens, and G. Opdenakker. 2002. Analysis of gelatinases in complex biological fluids and tissue extracts. Laboratory Investigation 82: 1607鈥?608.CrossRef PubMed
    37.Opdenakker, G., I. Nelissen, and J. Van Damme. 2003. Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis. Lancet Neurology 2: 747鈥?56.CrossRef PubMed
    38.Van Wart, H.E., and H. Birkedal-Hansen. 1990. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proceedings of the National academy of Sciences of the United States of America 87: 5578鈥?582.PubMedCentral CrossRef PubMed
    39.Masure, S., P. Proost, J. Van Damme, and G. Opdenakker. 1991. Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. European Journal of Biochemistry 198: 391鈥?98.CrossRef PubMed
    40.Masure, S., L. Paemen, I. Van Aelst, P. Fiten, P. Proost, A. Billiau, J. Van Damme, and G. Opdenakker. 1997. Production and characterization of recombinant active mouse gelatinase B from eukaryotic cells and in vivo effects after intravenous administration. European Journal of Biochemistry 244: 21鈥?0.CrossRef PubMed
  • 作者单位:Zheng Qiu (1)
    Fengguo Zhang (1)
    Chengxin Gong (1) (2)
    Hanmei Xu (1) (2)
    Jialiang Hu (1) (2)

    1. State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China
    2. The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, Peoples Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Rheumatology
    Internal Medicine
    Pharmacology and Toxicology
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-2576
文摘
Endotoxin shock induction in mice is a commonly used animal model to evaluate the protective effect of biologically active reagents. After an lipopolysaccharides (LPS) stimulus, matrix metalloproteinase-8 (MMP-8) and matrix metalloproteinase-9 (MMP-9) are rapidly degranulated and released by neutrophils, aside other enzymes and effector molecules. MMPs cleave extracellular matrix components and cytokines, and such processes contribute to shock syndrome development. CPU1 and CPU2 are two peptide MMP inhibitors with different in vitro IC50 values to several key enzymes, including MMP-8 and MMP-9. In vivo work confirmed that CPU1 and CPU2 protected mice from endotoxin shock after intravenous and intraperitoneal injections. Furthermore, their minimal effective dose after an intravenous injection and the maximum time interval between intraperitoneal peptide injection (150 mg/kg) and intravenous LPS injection were determined. With the use of an indirect competitive ELISA, plasma CPU1 and CPU2 concentrations in different experimental settings were measured. In addition, the acuteness of MMP-9 release in the mouse circulation after an intravenous LPS injection was confirmed with the zymography technique. Our findings reinforce previous work with other inhibitors about a strict time window within which effective MMP inhibition is needed to obtain significant survival rate improvements and also show that, with strict pharmacokinetic monitoring, potent protease inhibitors may in the future become life-savers in shock conditions. KEY WORDS endotoxin shock matrix metalloproteinase peptide inhibitor indirect competitive ELISA zymography

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700