The forward and backward transport processes in the AOT/hexane reversed micellar extraction of soybean protein
详细信息    查看全文
  • 作者:Jun Chen ; Fengliang Chen ; Xianchang Wang
  • 关键词:Reverse micelles ; Forward extraction ; Backward extraction ; Soybean protein
  • 刊名:Journal of Food Science and Technology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:51
  • 期:10
  • 页码:2851-2856
  • 全文大小:246 KB
  • 参考文献:1. AOAC (2000) Official methods of analysis, 17th Ed. Association of Official Analytical Chemists Arlington VA
    2. Cabral JMS, Aires-Barros MR (1993) In: Kennedy JF, Cabral JMS (eds) Recovery processes for biological materials. Wiley, UK, pp 247-71
    3. Chinma CE, Ariahu CC, Abu JO (2011) Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends. J Food Sci Technol. doi:10.1007/s13197-011-0451-8
    4. Correa NM, Durantini EN, Silber JJ (1998) Binding of nitrodiphenylamines to reverse micelles of AOT in n-hexane and carbon tetrachloride: solvent and substituent effects. J Colloid Interf Sci 208:96-03 CrossRef
    5. Gandhi AP, Jha K, Khare SK (2001) Application of HACCP system for the production of edible grade soymean. J Food Sci Technol 38:68-0
    6. G?klen KE, Hatton TA (1987) Liquid-liquid extraction of low molecular-weight proteins by selective solubilization in reversed micelles. Sep Sci Technol 22:831-41 CrossRef
    7. Harikrishna S, Srinivas ND, Raghavarao KSMS, Karanth NG (2002) Reverse micellar extraction for downstream processing of proteins/enzymes. Adv Biochem Eng Biotechnol 75:119-83
    8. Hong DP, Kuboi R (1999) Evaluation of the alcohol-mediated interaction between micelles using percolation processes of reverse micellar systems. Biochem Eng J 4:23-9 CrossRef
    9. Ichikawa S, Imai M, Shimizu MS (1992) Solubilizing water involved in protein extraction using reversed micelles. Biotechnol Bioeng 39:20-6 CrossRef
    10. Krishna SH, Srinivas ND, Raghavarao KSMS, Karanth NG (2002) Reverse micellar extraction for downstream processing of proteins/enzymes. Adv Biochem Eng Biotechnol 75:119-83
    11. Leser ME, Luisi PL (1989) The use of reverse micelles for the simultaneous extraction of oil and proteins from vegetable meal. Biotechnol Bioeng 34:1140-146 CrossRef
    12. Leser ME, Mrkoci K, Luisi PL (1993) Reverse micelles in protein separation: the use of silica for the back-transfer process. Biotechnol Bioeng 41:489-92 CrossRef
    13. Liu JG, Xing JM, Shen R, Yang CL, Liu HZ (2004a) Reverse micelles extraction of nattokinase from fermentation broth. Biochem Eng J 21:273-78 CrossRef
    14. Liu JG, Xing JM, Shen R, Yang CL, Liu HZ (2004b) Reverse micelles extraction of nattokinase from fermentation broth. Biochem Eng J 21:273-78 CrossRef
    15. Luisi PL, Giomini M, Pileni MP, Robinson BH (1988) Reverse micelles as hosts for proteins and small molecules. Biochim Biophy Acta 947:209-46 CrossRef
    16. Mathew DS, Juang RS (2005) Improved back extraction of papain from AOT reverse micelles using alcohols and a counter-ionic surfactant. Biochem Eng J 25:219-25 CrossRef
    17. Matzke SF, Creagh AL, Haynes LC (1992) Prausnitz JM and Blanch HW, mechanisms of protein solubilization in reverse micelles. Biotechnol Bioeng 40:91-02 CrossRef
    18. Nishiki T, Nakamura K, Kato D (2000) Forward and backward extraction rates of amino acid in reversed micellar extraction. Biochem Eng J 4:189-95 CrossRef
    19. Ohren JA (1981) Process and product characteristics for soya concentrates and isolates. J Am Oil Chem Soc 58:333-35 CrossRef
    20. Ronnie BG, Wolbert RH, Gijsbert V, Nachtegaal H, Dekker M, Van't Riet K, Bijsterbosch BH (1989) Protein transfer from an aqueous phase into reversed micelles the effect of protein size and charge distribution. Eur J Biochem 184:627-33 CrossRef
    21. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartener FH, Rovenzano MDP, Fujimoto EK, Goeke NM, Olson BJ, Klenk KC (1985) Measurement of protein using bichinchoninic acid. Anal Biochem 150:76-5 CrossRef
    22. Umesh Hebbar H, Raghavarao KSMS (2007) Extraction of bovine serum albumin using nanoparticulate reverse micelles. Progress Biochem 42:1602-608 CrossRef
    23. Umesh Hebbar H, Sumana B, Raghavarao KSMS (2008) Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresource Technol 99:4896-902 CrossRef
    24. Vassiliki P, Aristotelis X, Athanasios EE (1993) Proteolytic activity in various water-in-oil microemulsionsf as related to the polarity of the reaction medium. Colloid Surfaces B 1:295-03 CrossRef
    25. Wagner JR, Sorgentini DA, An MC (1996) Thermal and electroproretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates. J Agric Food Chem 44:1881-889 CrossRef
    26. Zhao XY, Chen FS, Chen JQ, Gai GS, Xue WT, Li LT (2008a) Effects of AOT reverse micelle on properties of soy globulins. Food Chem 111:599-05 CrossRef
    27. Zhao XY, Chen FS, Xue WT, Lee LT (2008b) FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocoll 22:568-75 CrossRef
  • 作者单位:Jun Chen (1)
    Fengliang Chen (1)
    Xianchang Wang (1)
    Xiaoyan Zhao (1) (3)
    Qiang Ao (2)

    1. Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
    3. Institute Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No. 198, Gongyebei Road, Jinan, 250100, China
    2. Institute of Neurological Disorders, Tsinghua University, Beijing, 100049, People’s Republic of China
  • ISSN:0975-8402
文摘
Soybean protein was taken as a model protein to investigate two aspects of the protein extraction by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: (1) the forward protein extraction from the solid state, and the effect of pH, AOT concentration, alcohol and water content (W0) on the transfer efficiency; (2) the back-transfer, the capability of the protein to be recovered from the micellar solution. The experimental results led to the conclusion that the highest forward extraction efficiency of soybean protein was reached at AOT concentration 180?mmol?l?, aqueous pH 7.0, KCl concentration 0.05?mol?l?, 0.5?% (v/v) alcohol, W0 18. Under these conditions, the forward extraction efficiency of soybean protein achieved 70.1?%. It was noted that the percentage of protein back extraction depended on the salt concentration and pH value. Around 92?% of protein recovery was obtained after back extraction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700