Variations of growth, nitrogen accumulation and nitrogen use efficiency among 18 willow clones under two nitrogen regimes
详细信息    查看全文
  • 作者:Weidong Yang (1)
    Zhiqiang Zhu (1) (2)
    Fengliang Zhao (1) (3)
    Zheli Ding (1) (4)
    Muhammad Tariq Rafiq (1)
    Yuyan Wang (1)
    Xincheng Zhang (1)
    Xiaoe Yang (1)
  • 关键词:Salix spp. ; Biomass production ; Nitrogen ; use efficiency ; Clonal variation ; Phytoremediation
  • 刊名:Agroforestry Systems
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:89
  • 期:1
  • 页码:67-79
  • 全文大小:890 KB
  • 参考文献:1. Aasamaa K, Heinsoo K, Holm B (2010) Biomass production, water use and photosynthesis of / Salix clones grown in a wastewater purification system. Biomass Bioenerg 34(6):897鈥?05 CrossRef
    2. Adegbidi HG, Briggs RD (2003) Nitrogen mineralization of sewage sludge and composted poultry manure applied to willow in a greenhouse experiment. Biomass Bioenerg 25(6):665鈥?73 CrossRef
    3. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20(6):399鈥?11 CrossRef
    4. Adler A, Karacic A, Weih M (2008) Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil 305(1鈥?):189鈥?06 CrossRef
    5. Ahmad A, Khan I, Abrol YP, Iqbal M (2008) Genotypic variation of nitrogen use efficiency in Indian mustard. Environ Pollut 154(3):462鈥?66 CrossRef
    6. Aronsson PG, Bergstr枚m LF, Elowson SNE (2000) Long-term influence of intensively cultured short-rotation willow coppice on nitrogen concentrations in groundwater. J Environ Manage 58(2):135鈥?45 CrossRef
    7. Borin M, Salvato M (2012) Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol Eng 46:34鈥?2 CrossRef
    8. Borjesson P, Berndes G (2006) The prospects of willow plantations for wastewater treatment in Sweden. Bimass Bioenergy 30:428鈥?38 CrossRef
    9. Cassan L, Corbineau F, Limami AM (2008) Genetic variability of nitrogen accumulation during vegetative development and remobilization during the forcing process in witloof chicory tuberized root ( / Cichorium intybus L.). J Plant Physiol 165(16):1667鈥?677 CrossRef
    10. Chandana R, Gupta S, Ahmad A, Iqbal M, Prasad M (2010) Variability in Indian bread wheat ( / Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers. Protoplasma 242(1鈥?):55鈥?7 CrossRef
    11. Chardon F, Barth茅l茅my J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in / Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61(9):2293鈥?302 CrossRef
    12. Chardon F, No毛l V, Masclaux-Daubresse C (2012) Exploring NUE in crops and in / Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63(9):3401鈥?412 CrossRef
    13. Chen H, Qualls RG, Blank RR (2005) Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic / Lepidium latifolium. Aquat Bot 82(4):250鈥?68 CrossRef
    14. Del Pozo A, Garnier E, Aronson J (2000) Contrasted nitrogen utilization in annual C3 grass and legume crops: physiological explorations and ecological considerations. Acta Oncol 21(1):79鈥?9
    15. Dimitriou I, Rosenqvist G (2011) Sewage sludge and wastewater fertilization of short rotation coppice (SRC) for increased bioenergy production-biological and economic potential. Biomass Bioenerg 35:835鈥?42 CrossRef
    16. Dimitriou I, Rosenqvist G, Berndes G (2011) Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass Bioenerg 35:4613鈥?618 CrossRef
    17. Elowson S (1999) Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass Bioenerg 16(4):281鈥?90 CrossRef
    18. Feng YL (2008) Nitrogen allocation and partitioning in invasive and native / Eupatorium species. Physiol Plant 132(3):350鈥?58 CrossRef
    19. Fillion M, Brisson J, Teodorescu TI, Sauv茅 S, Labrecque M (2009) Performance of / Salix / viminalis and / Populus nigra聽脳聽 / Populus maximowiczii in short rotation intensive culture under high irrigation. Biomass Bioenerg 33(9):1271鈥?277 CrossRef
    20. Guidi W, Labrecque M (2010) Effects of high water supply on growth, water use, and nutrient allocation in willow and poplar grown in a 1-year pot trial. Water Air Soil Poll 207(1鈥?):85鈥?01 CrossRef
    21. Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18(7):1184鈥?193 CrossRef
    22. Hangs RD, Schoenau JJ, Van Rees KCJ, Knight JD (2012) The effect of irrigation on nitrogen uptake and use efficiency of two willow ( / Salix spp.) biomass energy varieties. Can. J Plant Sci 92(3):563鈥?75
    23. Hawkins BJ (2007) Family variation in nutritional and growth traits in Douglas-fir seedlings. Tree Physiol 27(6):911鈥?19 CrossRef
    24. Hirose T (2011) Nitrogen use efficiency revisited. Oecologia 166(4):863鈥?67 CrossRef
    25. Kara膷i膰 A, Weih M (2006) Variation in growth and resource utilisation among eight poplar clones grown under different irrigation and fertilisation regimes in Sweden. Biomass Bioenerg 30(2):115鈥?24 CrossRef
    26. Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I (2011) Genetic improvement of willow for bioenergy and biofuels free access. J Integr Plant Biol 53(2):51鈥?65 CrossRef
    27. Koottatep T, Polprasert C (1997) Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Sci Technol 36(12):1鈥? CrossRef
    28. Kudo N, Fujiyama H (2010) Responses of halophyte / Salicornia bigelovii to different forms of nitrogen source. Pedosphere 20(3):311鈥?17 CrossRef
    29. Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of / Salix L. species for environmental projects. Water Air Soil Poll 162(1鈥?):183鈥?04 CrossRef
    30. Labrecque M, Teodorescu TI, Daigle S (1997) Biomass productivity and wood energy of / Salix species after 2聽years growth in SRIC fertilized with wastewater sludge. Biomass Bioenerg 12(6):409鈥?17 CrossRef
    31. Larsson S, Aronsson P, Backlund A, Carlander A, Clause P, Cuingnet C (2003) Short rotation willow biomass plantations irrigated and fertilized with wastewaters (FAIRS-CT97-3947). Final, Report, pp 1鈥?8
    32. Licht LA, Isebrands JG (2005) Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenerg 28(2):203鈥?18 CrossRef
    33. Mant C, Peterkin J, May E, Butler J (2003) A feasibility study of a / Salix viminalis gravel hydroponic system to renovate primary settled wastewater. Bioresour Technol 90(1):19鈥?5 CrossRef
    34. Meuleman AFM, Beekman JHP, Verhoeven JTA (2002) Nutrient retention and nutrient-use efficiency in / Phragmites australis stands after wasterwater application. Wetlands 22(4):712鈥?21 CrossRef
    35. North KA, Ehlting B, Koprivova A, Rennenberg H, Kopriva S (2009) Natural variation in / Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiol Biochem 47(10):912鈥?18 CrossRef
    36. Perttu KL (1999) Environmental and hygienic aspects of willow coppice in Sweden. Biomass Bioenerg 16(4):291鈥?97 CrossRef
    37. Perttu KL, Kowalik PJ (1997) / Salix vegetation filters for purification of waters and soils. Biomass Bioenerg 12(1):9鈥?9 CrossRef
    38. Polomski RF, Taylor MD, Bielenberg DG, Bridges WC, Klaine SJ, Whitwell T (2009) Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands. Water Air Soil Poll 197(1鈥?):223鈥?32 CrossRef
    39. Ribeiro MAQ, Da Silva JO, Aitken WM, Machado RCR, Baligar VC (2008) Nitrogen use efficiency in cacao genotypes. J Plant Nutr 31(2):239鈥?49 CrossRef
    40. Rosenqvist H, Dawson WM (2005) Economics of using wastewater irrigtaion of willow in Northern Ireland. Biomass Bioenerg 29:83鈥?2 CrossRef
    41. Rosenqvist H, Aronsson P, Hasselgren K, Perrtu K (1997) Economics of using municipal wastewater irrigtaion of willow coppice crops. Biomass Bioenerg 12:1鈥? CrossRef
    42. Rytter R-M (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecol Manag 140(2):177鈥?92 CrossRef
    43. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. P Natl Acad Sci Usa 106(1):203鈥?08 CrossRef
    44. Seo B-S, Park C-M, Song U, Park W-J (2010) Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment. Landsc Ecol Eng 6(2):211鈥?17 CrossRef
    45. Sharifi M, Zebarth BJ, Coleman W (2007) Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system. Commun Soil Sci Plant Anal 38(3鈥?):359鈥?70 CrossRef
    46. Sharma NC, Starnes DL, Sahi SV (2007) Phytoextraction of excess soil phosphorus. Environ Pollut 146(1):120鈥?27 CrossRef
    47. Steinbachov谩-Vojt铆拧kov谩 L, Tylov谩 E, Soukup A, Novick谩 H, Votrubov谩 O, Lipavsk谩 H, 膶铆啪kov谩 H (2006) Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in / Typha angustifolia. Environ Exp Bot 57(3):246鈥?57 CrossRef
    48. Stolarski M, Szczukowski S, Tworkowski J, Klasa A (2008) Productivity of seven clones of willow coppice in annual and quadrennial cutting cycles. Biomass Bioenerg 32(12):1227鈥?234 CrossRef
    49. V谩zquez de Aldana BR, Berendse F (1997) Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Funct Ecol 11(5):619鈥?26 CrossRef
    50. Weih M (2001) Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone. Tree Physiol 21(15):1141鈥?148 CrossRef
    51. Weih M, Nordh N-E (2002) Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenerg 23(6):397鈥?13 CrossRef
    52. Weih M, Asplund L, Bergkvist G (2011a) Assessment of nutrient use in annual and perennial crops: a functional concept for analyzing nitrogen use efficiency. Plant Soil 339(1鈥?):513鈥?20 CrossRef
    53. Weih M, Bonosi L, Ghelardini L, R枚nnberg-W盲stljung AC (2011b) Optimizing nitrogen economy under drought: increased leaf nitrogen is an acclimation to water stress in willow ( / Salix spp.). Ann Bot 108(7):1347鈥?353 CrossRef
  • 作者单位:Weidong Yang (1)
    Zhiqiang Zhu (1) (2)
    Fengliang Zhao (1) (3)
    Zheli Ding (1) (4)
    Muhammad Tariq Rafiq (1)
    Yuyan Wang (1)
    Xincheng Zhang (1)
    Xiaoe Yang (1)

    1. Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
    2. College of Agriculture, Hainan University, Renmin Road 58, Haikou, 570228, China
    3. Ministry of Agriculture Danzhou Scientific Observing and Experimental Station of Agro-Environment, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, 571737, China
    4. Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 570102, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Forestry
    Agriculture
  • 出版者:Springer Netherlands
  • ISSN:1572-9680
文摘
Willows (Salix spp.) have excellent capacity for acquiring nutrients, and are widely used for removing excess nutrients in wastewater purification system. In this study, 18 willow clones were evaluated in terms of growth parameters, nitrogen (N) accumulation and N use efficiency under two N regimes (low N and high N) with a sand culture system. Clonal differences were observed in biomass production, relative growth rate, N accumulation and use efficiency under two N regimes, which were contributed to the clone level. For all clones, nitrogen use efficiency was lower under high N condition than under low N condition. Nitrogen removal efficiency differed by 7-fold (low N regime) and 10-fold (high N regime) based on shoot N contents between the lowest and the highest clone. Among all the clones, J799 had the highest N content in shoots, showing largest N removal potential. These results confirmed that growth analysis and nutrient use strategy are efficient method of selecting Salix clones for improving the N removal potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700