Length scale and manufacturability in density-based topology optimization
详细信息    查看全文
  • 作者:Boyan S. Lazarov ; Fengwen Wang ; Ole Sigmund
  • 关键词:Topology optimization ; Length scale ; Manufacturability ; Regularization
  • 刊名:Archive of Applied Mechanics (Ingenieur Archiv)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:86
  • 期:1-2
  • 页码:189-218
  • 全文大小:2,095 KB
  • 参考文献:1.Aage, N., Andreassen, E., Lazarov, B.: Topology optimization using petsc: an easy-to-use, fully parallel, open source topology optimization framework. Struct. Multidiscip. Optim. 51(3), 565–572 (2015). doi:10.​1007/​s00158-014-1157-0 MathSciNet CrossRef
    2.Aage, N., Lazarov, B.: Parallel framework for topology optimization using the method of moving asymptotes. Struct. Multidiscip. Optim. 47(4), 493–505 (2013). doi:10.​1007/​s00158-012-0869-2 MathSciNet MATH CrossRef
    3.Alexandersen, J., Lazarov, B.: Tailoring macroscale response of mechanical and heat transfer systems by topology optimization of microstructural details. In: Lagaros, N.D., Papadrakakis, M. (eds.) Engineering and Applied Sciences Optimization, Computational Methods in Applied Sciences, vol. 38, pp. 267–288. Springer, Berlin (2015). doi:10.​1007/​978-3-319-18320-6_​15 CrossRef
    4.Alexandersen, J., Lazarov, B.S.: Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput. Methods Appl. Mech. Eng. 290, 156–182 (2015). doi:10.​1016/​j.​cma.​2015.​02.​028 MathSciNet CrossRef
    5.Allaire, G., Francfort, G.: A numerical algorithm for topology and shape optimization. In: Bendse, M., Soares, C. (eds.) Topology Design of Structures, NATO ASI Series, vol. 227, pp. 239–248. Springer, Netherlands (1993). doi:10.​1007/​978-94-011-1804-0_​16 CrossRef
    6.Allaire, G., Jouve, F., Michailidis, G.: Thickness control in structural optimization via a level set method (2014). https://​hal.​archives-ouvertes.​fr/​hal-00985000
    7.Allaire, G., Jouve, F., Toader, A.M.: A level-set method for shape optimization. Comptes Rendus Mathematique 334(12), 1125–1130 (2002). doi:10.​1016/​S1631-073X(02)02412-3 MathSciNet MATH CrossRef
    8.Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004). doi:10.​1016/​j.​jcp.​2003.​09.​032 MathSciNet MATH CrossRef
    9.Allaire, G., Kohn, R.: Topology optimization and optimal shape design using homogenization. In: Bendse, M., Soares, C. (eds.) Topology Design of Structures, NATO ASI Series, vol. 227, pp. 207–218. Springer, Netherlands (1993). doi:10.​1007/​978-94-011-1804-0_​14 CrossRef
    10.Amir, O.: Revisiting approximate reanalysis in topology optimization: on the advantages of recycled preconditioning in a minimum weight procedure. Struct. Multidiscip. Optim. 51(1), 41–57 (2015). doi:10.​1007/​s00158-014-1098-7 CrossRef
    11.Amir, O., Aage, N., Lazarov, B.: On multigrid-CG for efficient topology optimization. Struct. Multidiscip. Optim. 49(5), 815–829 (2014). doi:10.​1007/​s00158-013-1015-5 MathSciNet CrossRef
    12.Amir, O., Sigmund, O.: On reducing computational effort in topology optimization: how far can we go? Struct. Multidiscip. Optim. 44(1), 25–29 (2011). doi:10.​1007/​s00158-010-0586-7 MATH CrossRef
    13.Amir, O., Sigmund, O., Lazarov, B.S., Schevenels, M.: Efficient reanalysis techniques for robust topology optimization. Comput. Methods Appl. Mech. Eng. 245246, 217–231 (2012). doi:10.​1016/​j.​cma.​2012.​07.​008 MathSciNet CrossRef
    14.Andreassen, E., Lazarov, B.S., Sigmund, O.: Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69(1), 1–10 (2014). doi:10.​1016/​j.​mechmat.​2013.​09.​018 CrossRef
    15.Arora, J., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multidiscip. Optim. 30(4), 251–272 (2005). doi:10.​1007/​s00158-004-0509-6 MathSciNet MATH CrossRef
    16.Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, Berlin (2006)
    17.Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989). doi:10.​1007/​BF01650949 CrossRef
    18.Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988). doi:10.​1016/​0045-7825(88)90086-2 , http://​www.​sciencedirect.​com/​science/​article/​pii/​0045782588900862​
    19.Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)CrossRef
    20.Bendsøe, M.P., Sigmund, O.: Topology Optimization—Theory, Methods and Applications. Springer, Berlin (2003)
    21.Beyer, H.G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007). doi:10.​1016/​j.​cma.​2007.​03.​003 MathSciNet MATH CrossRef
    22.Borrvall, T., Petersson, J.: Topology optimization using regularized intermediate density control. Comput. Methods Appl. Mech. Eng. 190(37–38), 4911–4928 (2001)MathSciNet MATH CrossRef
    23.Bourdin, B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50, 2143–2158 (2001)MathSciNet MATH CrossRef
    24.Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM: Control Optim. Calc. Var. 9, 19–48 (2003). doi:10.​1051/​cocv:​2002070 MathSciNet MATH CrossRef
    25.Brackett, D., Ashcroft, I., Hague, R.: Topology optimization for additive manufacturing. In: Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium (2011)
    26.Brunner, T.A., Ferguson, R.A.: Approximate models for resist processing effects. Proc. SPIE 2726, 198–207 (1996). doi:10.​1117/​12.​240906 CrossRef
    27.Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190, 3443–3459 (2001)MATH CrossRef
    28.Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2012). doi:10.​1002/​adma.​201200584 CrossRef
    29.Chang, T.H.P.: Proximity effect in electronbeam lithography. J. Vac. Sci. Technol. 12(6), 1271–1275 (1975). doi:10.​1116/​1.​568515 , http://​scitation.​aip.​org/​content/​avs/​journal/​jvst/​12/​6/​10.​1116/​1.​568515
    30.Chen, S., Chen, W.: A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct. Multidiscip. Optim. 44(1), 1–18 (2011). doi:10.​1007/​s00158-011-0660-9 MathSciNet MATH CrossRef
    31.Chen, S., Chen, W., Lee, S.: Level set based robust shape and topology optimization under random field uncertainties. Struct. Multidiscip. Optim. 41, 507–524 (2010). doi:10.​1007/​s00158-009-0449-2 MathSciNet MATH CrossRef
    32.Christiansen, R.E., Lazarov, B.S., Jensen, J.S., Sigmund, O.: Creating geometrically robust designs for highly sensitive problems using topology optimization. Struct. Multidiscipl. Optim. 1–18 (2015). doi:10.​1007/​s00158-015-1265-5
    33.Clausen, A., Aage, N., Sigmund, O.: Topology optimization with flexible void area. Struct. Multidiscip. Optim. 50(6), 927–943 (2014). doi:10.​1007/​s00158-014-1109-8 MathSciNet CrossRef
    34.Clausen, A., Aage, N., Sigmund, O.: Topology optimization of coated structures and material interface problems. Comput. Methods Appl. Mech. Eng. 290, 524–541 (2015). doi:10.​1016/​j.​cma.​2015.​02.​011 MathSciNet CrossRef
    35.Coelho, P., Fernandes, P., Rodrigues, H., Cardoso, J., Guedes, J.: Numerical modeling of bone tissue adaptational hierarchical approach for bone apparent density and trabecular structure. J. Biomech. 42(7), 830–837 (2009). doi:10.​1016/​j.​jbiomech.​2009.​01.​020
    36.Cui, Z.: Nanofabrication: Principles, Capabilities and Limits. Springer, US (2008). doi:10.​1007/​978-0-387-75577-9_​2 CrossRef
    37.Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014). doi:10.​1007/​s00158-013-0956-z MathSciNet CrossRef
    38.Diaz, A., Sigmund, O.: Checkerboard patterns in layout optimization. Struct. Multidiscip. Optim. 10, 40–45 (1995)CrossRef
    39.Dill, F., Neureuther, A.R., Tuttle, J., Walker, E.: Modeling projection printing of positive photoresists. IEEE Trans. Electron Devices 22(7), 456–464 (1975). doi:10.​1109/​T-ED.​1975.​18161 CrossRef
    40.Donoso, A., Sigmund, O.: Topology optimization of piezo modal transducers with null-polarity phases. Struct. Multidiscip. Optim. (2015). doi:10.​1007/​s00158-015-1330-0
    41.Doyle, K.: Bioprinting: from patches to parts. Genet. Eng. Biotechnol. News 34, 34–35 (2014). doi:10.​1089/​gen.​34.​10.​02
    42.Dunning, P.D., Kim, H.A.: Robust topology optimization: minimization of expected and variance of compliance. AIAA J. 51(11), 2656–2664 (2013). doi:10.​2514/​1.​J052183 CrossRef
    43.Elesin, Y., Lazarov, B., Jensen, J., Sigmund, O.: Design of robust and efficient photonic switches using topology optimization. Photonics Nanostruct. Fundam. Appl. 10(1), 153–165 (2012). doi:10.​1016/​j.​photonics.​2011.​10.​003 CrossRef
    44.Elesin, Y., Lazarov, B., Jensen, J., Sigmund, O.: Time domain topology optimization of 3D nanophotonic devices. Photonics Nanostruct. Fundam. Appl. 12(1), 23–33 (2014). doi:10.​1016/​j.​photonics.​2013.​07.​008 CrossRef
    45.Elishakoff, I., Ohsaki, M.: Optimization and Anti-optimization of Structures Under Uncertainty. Imperial College Press, London (2010)MATH CrossRef
    46.Evgrafov, A.: State space newton’s method for topology optimization. Comput. Methods Appl. Mech. Eng. 278, 272–290 (2014). doi:10.​1016/​j.​cma.​2014.​06.​005 MathSciNet CrossRef
    47.Evgrafov, A.: On chebyshevs method for topology optimization of stokes flows. Struct. Multidiscip. Optim. 1–11 (2015). doi:10.​1007/​s00158-014-1176-x
    48.Evgrafov, A., Rupp, C., Maute, K., Dunn, M.: Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct. Multidiscip. Optim. 36(4), 329–345 (2008). doi:10.​1007/​s00158-007-0190-7 MathSciNet MATH CrossRef
    49.Frangopol, D.M., Maute, K.: Life-cycle reliability-based optimization of civil and aerospace structures. Comput. Struct. 81(7), 397–410 (2003). doi:10.​1016/​S0045-7949(03)00020-8 CrossRef
    50.Gan, Z., Cao, Y., Evans, R.A., Gu, M.: Three-dimensional deep sub-diffraction optical beam lithography with 9nm feature size. Nat. Commun. 4 (2013). doi:10.​1038/​ncomms3061
    51.Gaynor, A.T., Meisel, N.A., Williams, C.B., Guest, J.K.: Multiple-material topology optimization of compliant mechanisms created via polyjet three-dimensional printing. J. Manuf. Sci. Eng. 136, 061015 (2014). doi:10.​1115/​1.​4028439 CrossRef
    52.Gaynor, A.T., Meisel, N.A., Williams, C.B., Guest, J.K.: Topology optimization for additive manufacturing: Considering maximum overhang constraint. In: AIAA Aviation, pp. –. American Institute of Aeronautics and Astronautics (2014). doi:10.​2514/​6.​2014-2036
    53.Gersborg, A.R., Andreasen, C.S.: An explicit parameterization for casting constraints in gradient driven topology optimization. Struct. Multidiscip. Optim. 44(6), 875–881 (2011). doi:10.​1007/​s00158-011-0632-0 CrossRef
    54.Ghanem, R., Spanos, P.: Stochastic Finite Elements—A Spectral Approach. Dover Publications Inc, Mineola (2003)
    55.Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies. Springer, Berlin (2010)CrossRef
    56.Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987). doi:10.​1016/​0021-9991(87)90140-9 MathSciNet MATH CrossRef
    57.Groover, M.P.: Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. Wiley, New York (2010)
    58.Guest, J.: Imposing maximum length scale in topology optimization. Struct. Multidiscip. Optim. 37, 463–473 (2009). doi:10.​1007/​s00158-008-0250-7 MathSciNet MATH CrossRef
    59.Guest, J., Asadpoure, A., Ha, S.H.: Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct. Multidiscip. Optim. 44(4), 443–453 (2011). doi:10.​1007/​s00158-011-0676-1 MathSciNet MATH CrossRef
    60.Guest, J., Prevost, J., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2004)MathSciNet MATH CrossRef
    61.Guest, J.K.: Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1–4), 123–135 (2009)MathSciNet MATH CrossRef
    62.Guest, J.K.: Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach. Comput. Methods Appl. Mech. Eng. 283, 330–351 (2015). doi:10.​1016/​j.​cma.​2014.​09.​006 CrossRef
    63.Guest, J.K., Ha, S.H.: Design of Multifunctional Material Structures Using Topology Optimization with Feature Control, pp. 129–134. Wiley, New York (2011). doi:10.​1002/​9781118147726.​ch17
    64.Guest, J.K., Prvost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43(2223), 7028–7047 (2006). doi:10.​1016/​j.​ijsolstr.​2006.​03.​001 MATH CrossRef
    65.Guest, J.K., Smith Genut, L.C.: Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81(8), 1019–1045 (2010). doi:10.​1002/​nme.​2724 MATH
    66.Guest, J.K., Zhu, M.: Casting and milling restrictions in topology optimization via projection-based algorithms. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 3: 38th Design Automation Conference, Parts A and B Chicago, Illinois, USA, August, p. 1215 (2012)
    67.Guo, X., Zhang, W., Zhong, W.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014). doi:10.​1016/​j.​cma.​2014.​01.​010 MathSciNet MATH CrossRef
    68.Ha, S.H., Guest, J.: Optimizing inclusion shapes and patterns in periodic materials using discrete object projection. Struct. Multidiscip. Optim. 50(1), 65–80 (2014). doi:10.​1007/​s00158-013-1026-2 CrossRef
    69.Haber, R., Jog, C., Bendsoe, M.: A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 11(1), 1–12 (1996)CrossRef
    70.Hannon, A.F., Ding, Y., Bai, W., Ross, C.A., Alexander-Katz, A.: Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations. Nano Lett. 14(1), 318–325 (2014). doi:10.​1021/​nl404067s CrossRef
    71.Harzheim, L., Graf, G.: A review of optimization of cast parts using topology optimization. Struct. Multidiscip. Optim. 31(5), 388–399 (2006). doi:10.​1007/​s00158-005-0554-9 CrossRef
    72.Jansen, M., Lazarov, B.S., Schevenels, M., Sigmund, O.: On the similarities between micro/nano lithography and topology optimization projection methods. Struct. Multidiscip. Optim. 48(4), 717–730 (2013). doi:10.​1007/​s00158-013-0941-6 MathSciNet CrossRef
    73.Jansen, M., Lombaert, G., Diehl, M., Lazarov, B.S., Sigmund, O., Schevenels, M.: Robust topology optimization accounting for misplacement of material. Struct. Multidiscip. Optim. 47, 317–333 (2013). doi:10.​1007/​s00158-012-0835-z MathSciNet MATH CrossRef
    74.Jansen, M., Lombaert, G., Schevenels, M.: Robust topology optimization of structures with imperfect geometry based on geometric nonlinear analysis. Comput. Methods Appl. Mech. Eng. 285, 452–467 (2015). doi:10.​1016/​j.​cma.​2014.​11.​028 MathSciNet CrossRef
    75.Jansen, M., Lombaert, G., Schevenels, M., Sigmund, O.: Topology optimization of fail-safe structures using a simplified local damage model. Struct. Multidiscip. Optim. 49(4), 657–666 (2014). doi:10.​1007/​s00158-013-1001-y MathSciNet CrossRef
    76.Jog, C.S., Haber, R.B.: Stability of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl. Mech. Eng. 130(3–4), 203–226 (1996)MathSciNet MATH CrossRef
    77.Kawamoto, A., Matsumori, T., Kondoh, T., Nomura, T., Yamasaki, S., Nishiwaki, S.: Topology optimization by using a time-dependent diffusion equation. In: Proceedings of 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan (2011)
    78.Kawamoto, A., Matsumori, T., Yamasaki, S., Nomura, T., Kondoh, T., Nishiwaki, S.: Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct. Multidiscip. Optim. 44, 19–24 (2011). doi:10.​1007/​s00158-010-0562-2 MATH CrossRef
    79.Kawata, S., Sun, H.B., Tanaka, T., Takada, K.: Finer features for functional microdevices. Nature 412, 697–698 (2001)CrossRef
    80.Kharmanda, G., Olhoff, N., Mohamed, A., Lemaire, M.: Reliability-based topology optimization. Struct. Multidiscip. Optim. 26, 295–307 (2004)CrossRef
    81.Kim, T.S., Kim, J.E., Jeong, J.H., Kim, Y.Y.: Filtering technique to control member size in topology design optimization. KSME Int. J. 18(2), 253–261 (2004). doi:10.​1007/​BF03184735
    82.Kogiso, N., Ahn, W., Nishiwaki, S., Izui, K., Yoshimura, M.: Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J. Adv. Mech. Des. Syst. Manif. 2(1), 96–107 (2008). doi:10.​1299/​jamdsm.​2.​96
    83.Kreisselmeier, G., Steinhauser, R.: Application of vector performance optimization to a robust control loop design for a fighter aircraft. Int. J. Control 37(2), 251–284 (1983). doi:10.​1080/​00207179.​1983.​9753066 MATH CrossRef
    84.Landis, S. (ed.): Nano-Lithography. Wiley, New York (2013)
    85.Lazarov, B., Matzen, R., Elesin, Y.: Topology optimization of pulse shaping filters using the hilbert transform envelope extraction. Struct. Multidiscip. Optim. 44, 409–419 (2011). doi:10.​1007/​s00158-011-0642-y MathSciNet MATH CrossRef
    86.Lazarov, B., Sigmund, O.: Sensitivity filters in topology optimisation as a solution to Helmholtz type differential equation. In: Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization (2009)
    87.Lazarov, B., Wang, F.: Maximum length scale in density based topology optimization (2015) (in review)
    88.Lazarov, B.S.: Topology optimization using multiscale finite element method for high-contrast media. In: Lirkov, I., Margenov, S., Waniewski, J. (eds.) Large-Scale Scientific Computing, Lecture Notes in Computer Science, pp. 339–346. Springer, Berlin (2014). doi:10.​1007/​978-3-662-43880-0_​38
    89.Lazarov, B.S., Schevenels, M., Sigmund, O.: Robust design of large-displacement compliant mechanisms. Mech. Sci. 2(2), 175–182 (2011). doi:10.​5194/​ms-2-175-2011 CrossRef
    90.Lazarov, B.S., Schevenels, M., Sigmund, O.: Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct. Multidiscip. Optim. 46, 597–612 (2012). doi:10.​1007/​s00158-012-0791-7 MathSciNet MATH CrossRef
    91.Lazarov, B.S., Schevenels, M., Sigmund, O.: Topology optimization with geometric uncertainties by perturbation techniques. Int. J. Numer. Methods Eng. 90(11), 1321–1336 (2012). doi:10.​1002/​nme.​3361 MATH CrossRef
    92.Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86(6), 765–781 (2011). doi:10.​1002/​nme.​3072 MathSciNet MATH CrossRef
    93.Le, C., Norato, J., Bruns, T., Ha, C., Tortorelli, D.: Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 41(4), 605–620 (2010). doi:10.​1007/​s00158-009-0440-y CrossRef
    94.Leary, M., Merli, L., Torti, F., Mazur, M., Brandt, M.: Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater. Des. 63, 678–690 (2014). doi:10.​1016/​j.​matdes.​2014.​06.​015 CrossRef
    95.Liu, J., Ma, Y.S.: 3d level-set topology optimization: a machining feature-based approach. Struct. Multidiscip. Optim. 1–20 (2015). doi:10.​1007/​s00158-015-1263-7
    96.Liu, S., Li, Q., Chen, W., Hu, R., Tong, L.: H-DGTP-a heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures. Struct. Multidiscip. Optim. 1–11 (2015). doi:10.​1007/​s00158-015-1281-5
    97.Lógó, J., Ghaemi, M., Rad, M.: Optimal topologies in case of probabilistic loading: the influence of load correlation. Mech. Based Des. Struct. Mach. 37(3), 327–348 (2009)CrossRef
    98.Mack, C.: Fundamental Principles of Optical Lithography: The Science of Microfabrication. Wiley, New York (2007)CrossRef
    99.Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952). doi:10.​1111/​j.​1540-6261.​1952.​tb01525.​x
    100.Maruo, S., Nakamura, O., Kawata, S.: Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997). doi:10.​1364/​OL.​22.​000132 CrossRef
    101.Maute, K.: Topology optimization under uncertainty. In: Rozvany, G., Lewiski, T. (eds.) Topology Optimization in Structural and Continuum Mechanics, CISM International Centre for Mechanical Sciences, vol. 549, pp. 457–471. Springer, Vienna (2014). doi:10.​1007/​978-3-7091-1643-2_​20 CrossRef
    102.Maute, K., Frangopol, D.: Reliability-based design of mems mechanisms by topology optimization. Comput. Struct. 81, 813–824 (2003)CrossRef
    103.Mei, Y., Wang, X., Cheng, G.: A feature-based topological optimization for structure design. Adv. Eng. Softw. 39(2), 71–87 (2008). doi:10.​1016/​j.​advengsoft.​2007.​01.​023 CrossRef
    104.Men, H., Freund, R.M., Nguyen, N.C., Saa-Seoane, J., Peraire, J.: Fabrication-adaptive optimization with an application to photonic crystal design. Oper. Res. 62(2), 418–434 (2014). doi:10.​1287/​opre.​2013.​1252 MathSciNet MATH CrossRef
    105.Michailidis, G.: Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. Ph.D. thesis, Ecole Polytechnique (2014). https://​pastel.​archives-ouvertes.​fr/​pastel-00937306
    106.Mlejnek, H.: Some aspects of the genesis of structures. Struct. Optim. 5(1–2), 64–69 (1992). doi:10.​1007/​BF01744697 CrossRef
    107.Mohammad, M., Muhammad, M., Dew, S.K., Stepanova, M.: Fundamentals of electron beam exposure and development. In: Stepanova, M., Dew, S. (eds.) Nanofabrication, pp. 11–41. Springer, Vienna (2012). doi:10.​1007/​978-3-7091-0424-8_​2 CrossRef
    108.Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, New York (2013). doi:10.​1002/​9781118600788 CrossRef
    109.Nomura, T., Sato, K., Taguchi, K., Kashiwa, T., Nishiwaki, S.: Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int. J. Numer. Methods Eng. 71(11), 1261–1296 (2007). doi:10.​1002/​nme.​1974 MATH CrossRef
    110.Norato, J., Bell, B., Tortorelli, D.: A geometry projection method for continuum-based topology optimization with discrete elements. Comput. Methods Appl. Mech. Eng. (2015). doi:10.​1016/​j.​cma.​2015.​05.​005 , http://​www.​sciencedirect.​com/​science/​article/​pii/​S004578251500171​1
    111.Oropallo, W., Piegl, L.: Ten challenges in 3D printing. Eng. Comput. 1–14 (2015). doi:10.​1007/​s00366-015-0407-0
    112.Poonawala, A., Milanfar, P.: Mask design for optical microlithography—an inverse imaging problem. IEEE Trans. Image Process. 16(3), 774–788 (2007). doi:10.​1109/​TIP.​2006.​891332 MathSciNet CrossRef
    113.Poulsen, T.A.: A new scheme for imposing a minimum length scale in topology optimization. Int. J. Numer. Methods Eng. 57, 741–760 (2003)MathSciNet MATH CrossRef
    114.Qian, X., Sigmund, O.: Topological design of electromechanical actuators with robustness toward over- and under-etching. Comput. Methods Appl. Mech. Eng. 253, 237–251 (2013). doi:10.​1016/​j.​cma.​2012.​08.​020 MathSciNet MATH CrossRef
    115.Rehman, S., Langelaar, M., van Keulen, F.: Robust optimization of 2x2 multimode interference couplers with fabrication uncertainties. Proc. SPIE 8627, 862713 (2013). doi:10.​1117/​12.​2000647 CrossRef
    116.Rehman, S., Langelaar, M., van Keulen, F.: Efficient kriging-based robust optimization of unconstrained problems. J. Comput. Sci. 5(6), 872–881 (2014). doi:10.​1016/​j.​jocs.​2014.​04.​005 , http://​www.​sciencedirect.​com/​science/​article/​pii/​S187775031400047​7
    117.Rodrigues, H., Guedes, J., Bendsoe, M.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24(1), 1–10 (2002). doi:10.​1007/​s00158-002-0209-z CrossRef
    118.Rojas-Labanda, S., Stolpe, M.: Benchmarking optimization solvers for structural topology optimization. Struct. Multidiscip. Optim. 1–21 (2015). doi:10.​1007/​s00158-015-1250-z
    119.Ruszczynski, A., Shapiro, A.: Optimization of convex risk functions. Mathe. Oper. Res. 31(3), 433–452 (2006). doi:10.​1287/​moor.​1050.​0186 MathSciNet MATH CrossRef
    120.Saxena, A.: Topology design with negative masks using gradient search. Struct. Multidiscip. Optim. 44(5), 629–649 (2011). doi:10.​1007/​s00158-011-0649-4 CrossRef
    121.Schevenels, M., Lazarov, B., Sigmund, O.: Robust topology optimization accounting for spatially varying manufacturing errors. Comput. Methods Appl. Mech. Eng. 200(49–52), 3613–3627 (2011). doi:10.​1016/​j.​cma.​2011.​08.​006 MATH CrossRef
    122.Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 493–524 (1997)CrossRef
    123.Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007). doi:10.​1007/​s00158-006-0087-x CrossRef
    124.Sigmund, O.: Manufacturing tolerant topology optimization. Acta Mech. Sin. 25, 227–239 (2009)MATH CrossRef
    125.Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013). doi:10.​1007/​s00158-013-0978-6 MathSciNet CrossRef
    126.Sokolowski, J., Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999). doi:10.​1137/​S036301299732323​0 MathSciNet MATH CrossRef
    127.Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab. Wiley, New York (2010)CrossRef
    128.Sørensen, R., Lund, E.: Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures. Struct. Multidiscip. Optim. 1–24 (2015). doi:10.​1007/​s00158-015-1230-3
    129.Stolpe, M., Svanberg, K.: An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22(2), 116–124 (2001). doi:10.​1007/​s001580100129 CrossRef
    130.Stolpe, M., Svanberg, K.: On the trajectories of penalization methods for topology optimization. Struct. Multidiscip. Optim. 21(2), 128–139 (2001). doi:10.​1007/​s001580050177 CrossRef
    131.Suzuki, K.: Electron beam lithography systems. In: Microlithography, pp. 329–360. CRC Press (2007). doi:10.​1201/​9781420051537.​ch6
    132.Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNet MATH CrossRef
    133.Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12, 555–573 (2002)MathSciNet MATH CrossRef
    134.Svanberg, K., Svärd, H.: Density filters for topology optimization based on the pythagorean means. Struct. Multidiscip. Optim. 48(5), 859–875 (2013). doi:10.​1007/​s00158-013-0938-1 MathSciNet CrossRef
    135.Takezawa, A., Kobashi, M., Kitamura, M.: Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing (2015). http://​arxiv.​org/​abs/​1504.​07724v1
    136.Tomlin, M., Meyer, J.: Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The 7th Altair CAE Technology Conference (2011)
    137.Tootkaboni, M., Asadpoure, A., Guest, J.K.: Topology optimization of continuum structures under uncertainty a polynomial chaos approach. Comput. Methods Appl. Mech. Eng. 201–204, 263–275 (2012). doi:10.​1016/​j.​cma.​2011.​09.​009 MathSciNet CrossRef
    138.Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt, T., Greil, P.: Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16(6), 729–754 (2014). doi:10.​1002/​adem.​201400097 CrossRef
    139.Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)MATH CrossRef
    140.Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., DeSimone, J.M.: Continuous liquid interface production of 3D objects. Science 347(6228), 1349–1352 (2015). doi:10.​1126/​science.​aaa2397 CrossRef
    141.van Dijk, N., Maute, K., Langelaar, M., van Keulen, F.: Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013). doi:10.​1007/​s00158-013-0912-y MathSciNet CrossRef
    142.Vassilevski, P.S.: Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer, New York (2008)
    143.Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). doi:10.​1007/​s10107-004-0559-y MathSciNet MATH CrossRef
    144.Wadbro, E., Udawalpola, R., Berggren, M.: Shape and topology optimization of an acoustic horn–lens combination. J. Comput. Appl. Math. 234(6), 1781–1787 (2010). doi:10.​1016/​j.​cam.​2009.​08.​028 MATH CrossRef
    145.Wang, F., Jensen, J.S., Sigmund, O.: Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J. Opt. Soc. Am. B 28(3), 387–397 (2011). doi:10.​1364/​JOSAB.​28.​000387 CrossRef
    146.Wang, F., Jensen, J.S., Sigmund, O.: High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics Nanostruct. Fundam. Appl. 10(4), 378–388 (2012). doi:10.​1016/​j.​photonics.​2012.​04.​004 (TaCoNa-Photonics 2011)
    147.Wang, F., Lazarov, B., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43(6), 767–784 (2011). doi:10.​1007/​s00158-010-0602-y MATH CrossRef
    148.Wang, F., Lazarov, B.S., Sigmund, O., Jensen, J.S.: Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput. Methods Appl. Mech. Eng. 276, 453–472 (2014). doi:10.​1016/​j.​cma.​2014.​03.​021 MathSciNet CrossRef
    149.Wang, F., Sigmund, O., Jensen, J.S.: Design of materials with prescribed nonlinear properties. J. Mech. Phys. Solids 69(1), 156–174 (2014). doi:10.​1016/​j.​jmps.​2014.​05.​003 MathSciNet CrossRef
    150.Wang, M., Zhou, S., Ding, H.: Nonlinear diffusions in topology optimization. Struct. Multidiscip. Optim. 28, 262–276 (2004)MathSciNet MATH CrossRef
    151.Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(12), 227–246 (2003). doi:10.​1016/​S0045-7825(02)00559-5 MATH CrossRef
    152.Wu, S., Serbin, J., Gu, M.: Two-photon polymerisation for three-dimensional micro-fabrication. J. Photochem. Photobiol. A Chem. 181(1), 1–11 (2006). doi:10.​1016/​j.​jphotochem.​2006.​03.​004 CrossRef
    153.Xia, Q., Shi, T.: Constraints of distance from boundary to skeleton: for the control of length scale in level set based structural topology optimization. Comput. Methods Appl. Mech. Eng. 295, 525–542 (2015). doi:10.​1016/​j.​cma.​2015.​07.​015 MathSciNet CrossRef
    154.Xia, Q., Shi, T., Wang, M., Liu, S.: A level set based method for the optimization of cast part. Struct. Multidiscip. Optim. 41(5), 735–747 (2010). doi:10.​1007/​s00158-009-0444-7 MathSciNet CrossRef
    155.Xia, Q., Shi, T., Wang, M., Liu, S.: Simultaneous optimization of cast part and parting direction using level set method. Struct. Multidiscip. Optim. 44(6), 751–759 (2011). doi:10.​1007/​s00158-011-0690-3 MathSciNet MATH CrossRef
    156.Xie, Y., Steven, G.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993). doi:10.​1016/​0045-7949(93)90035-C CrossRef
    157.Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)
    158.Xu, S., Cai, Y., Cheng, G.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)
    159.Zauderer, E.: Partial Differential Equations of Applied Mathematics, 2 edn. Wiley, New York (1998)
    160.Zhang, W., Xia, L., Zhu, J., Zhang, Q.: Some recent advances in the integrated layout design of multicomponent systems. J. Mech. Des. 133, 15 (2011)
    161.Zhang, W., Zhong, W., Guo, X.: An explicit length scale control approach in SIMP-based topology optimization. Comput. Methods Appl. Mech. Eng. 282, 71–86 (2014). doi:10.​1016/​j.​cma.​2014.​08.​027 MathSciNet CrossRef
    162.Zhao, J., Wang, C.: Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Comput. Methods Appl. Mech. Eng. 273, 204–218 (2014). doi:10.​1016/​j.​cma.​2014.​01.​018 MATH CrossRef
    163.Zhao, L., Ha, S., Sharp, K.W., Geltmacher, A.B., Fonda, R.W., Kinsey, A.H., Zhang, Y., Ryan, S.M., Erdeniz, D., Dunand, D.C., Hemker, K.J., Guest, J.K., Weihs, T.P.: Permeability measurements and modeling of topology-optimized metallic 3-D woven lattices. Acta Mater. 81, 326–336 (2014). doi:10.​1016/​j.​actamat.​2014.​08.​037 CrossRef
    164.Zhou, M., Fleury, R., Shyy, Y.K., Thomas, H., Brennan, J.: Progress in topology optimization with manufacturing constraints. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (2002). doi:10.​2514/​6.​2002-5614
    165.Zhou, M., Lazarov, B.S., Sigmund, O.: Topology optimization for optical projection lithography with manufacturing uncertainties. Appl. Opt. 53(12), 2720–2729 (2014). doi:10.​1364/​AO.​53.​002720 CrossRef
    166.Zhou, M., Lazarov, B.S., Wang, F., Sigmund, O.: Minimum length scale in topology optimization by geometric constraints. Comput. Methods Appl. Mech. Eng. 293, 266–282 (2015). doi:10.​1016/​j.​cma.​2015.​05.​003
    167.Zhou, M., Rozvany, G.: The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89(13), 309–336 (1991). doi:10.​1016/​0045-7825(91)90046-9 CrossRef
    168.Zhou, M., Wang, M.Y.: Engineering feature design for level set based structural optimization. Comput. Aided Des. 45(12), 1524–1537 (2013). doi:10.​1016/​j.​cad.​2013.​06.​016 MathSciNet CrossRef
    169.Zhu, J.H., Gu, X.J., Zhang, W.H., Beckers, P.: Structural design of aircraft skin stretch-forming die using topology optimization. J. Comput. Appl. Math. 246, 278–288 (2013). doi:10.​1016/​j.​cam.​2012.​09.​001 MathSciNet MATH CrossRef
    170.Zhu, J.H., Zhang, W.H., Xia, L.: Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 1–28 (2015). doi:10.​1007/​s11831-015-9151-2
    171.Zienkiewicz, O.C., Taylor, R.L., Zhu, J.: The Finite Element Method. Elsevier, Amsterdam (2005)MATH
  • 作者单位:Boyan S. Lazarov (1)
    Fengwen Wang (1)
    Ole Sigmund (1)

    1. Technical University of Denmark, Nils Koppels Allé, Building 404, 2800, Kgs. Lyngby, Denmark
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics
    Complexity
    Fluids
    Thermodynamics
    Systems and Information Theory in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0681
文摘
Since its original introduction in structural design, density-based topology optimization has been applied to a number of other fields such as microelectromechanical systems, photonics, acoustics and fluid mechanics. The methodology has been well accepted in industrial design processes where it can provide competitive designs in terms of cost, materials and functionality under a wide set of constraints. However, the optimized topologies are often considered as conceptual due to loosely defined topologies and the need of postprocessing. Subsequent amendments can affect the optimized design performance and in many cases can completely destroy the optimality of the solution. Therefore, the goal of this paper is to review recent advancements in obtaining manufacturable topology-optimized designs. The focus is on methods for imposing minimum and maximum length scales, and ensuring manufacturable, well-defined designs with robust performances. The overview discusses the limitations, the advantages and the associated computational costs. The review is completed with optimized designs for minimum compliance, mechanism design and heat transfer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700