giganteus cropping systems in the long term. This research version was then validated on a large database and in various pedoclimatic environments in France and UK. The model accurately simulated biomass production and nitrogen (N) content in aboveground biomass, from planting until 4 to 20 years of cultivation. The model efficiency (EF) was 0.80 and 0.64 for biomass and N content, respectively, and the values of relative RMSE were 23 and 31 %. Soil water and mineral N contents were also satisfactorily predicted (EF--.96 and 0.42; relative RMSE--0 and 72 %). The model accurately reproduced the effect of management practices on the harvested biomass and N export. Yield gap analysis using simulations with and without active stresses revealed that Miscanthus?×-em class="EmphasisTypeItalic ">giganteus biomass production was limited by both water and N availability during the establishment phase but mainly limited by water availability during the post-establishment phase. The STICS crop–soil model can accurately predict Miscanthus?×-em class="EmphasisTypeItalic ">giganteus biomass production and environmental impacts such as water drainage and nitrate leaching and compare strategies with varying N fertilization, irrigation and harvest date. Keywords Miscanthus Model STICS Nitrogen stress Water stress Yield gap" />
Multisite Yield Gap Analysis of Miscanthus?×-em class="a-plus-plus">giganteus Using the STICS Model
详细信息    查看全文
  • 作者:Lo?c Strullu ; Fabien Ferchaud ; Nicola Yates ; Ian Shield…
  • 关键词:Miscanthus ; Model ; STICS ; Nitrogen stress ; Water stress ; Yield gap
  • 刊名:BioEnergy Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1735-1749
  • 全文大小:893 KB
  • 参考文献:1.Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19(4):209-27CrossRef
    2.Christian DG, Haase E (2001) Agronomy of Miscanthus. In: Jones MB, Walsh ME (eds) Miscanthus for energy and fibre. James & James, London, pp 21-5
    3.Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C 4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27(1):21-0. doi:10.-016/?j.?biombioe.-003.-0.-05 CrossRef
    4.Cosentino SL, Patane C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25(1):75-8. doi:10.-016/?j.?indcrop.-006.-7.-06 CrossRef
    5.Ercoli L, Mariotti M, Masoni A, Bonari E (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crop Res 63(1):3-1. doi:10.-016/?s0378-4290(99)00022-2 CrossRef
    6.Cadoux S, Riche AB, Yates NE, Machet J-M (2012) Nutrient requirements of Miscanthus?×?giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14-2. doi:10.-016/?j.?biombioe.-011.-1.-15 CrossRef
    7.Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus?×?giganteus growth and biomass production. Agric For Meteorol 148(8/9):1280-292. doi:10.-016/?j.?agrformet.-008.-3.-10 CrossRef
    8.Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112(4):335-46. doi:10.-016/?j.?agee.-005.-8.-03 CrossRef
    9.Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, vol 34. Annual Review of Environment and Resources. Annual Reviews, Palo Alto, pp 179-04. doi:10.-146/?annurev.?environ.-41008.-93740
    10.Bhatia VS, Singh P, Wani SP, Chauhan GS, Rao A, Mishra AK, Sriniuas K (2008) Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agric For Meteorol 148(8-):1252-265. doi:10.-016/?j.?agrformet.-008.-3.-04 CrossRef
    11.Clifton-Brown JC, Neilson B, Lewandowski I, Jones MB (2000) The modelled productivity of Miscanthus?×?giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12(2):97-09. doi:10.-016/?s0926-6690(00)00042-x CrossRef
    12.Hastings A, Clifton-Brown J, Wattenbach M, Mitchell P, Smith P (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Glob Change Biol Bioenergy 1(2):154-70. doi:10.-111/?j.-757-1707.-009.-1007.?x CrossRef
    13.Jing Q, Conijn SJG, Jongschaap REE, Bindraban PS (2012) Modeling the productivity of energy crops in different agro-ecological environments. Biomass Bioenergy 46:618-33. doi:10.-016/?j.?biombioe.-012.-6.-35 CrossRef
    14.Miguez FE, Zhu XG, Humphries S, Bollero GA, Long SP (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus?×?giganteus: description, parameterization and validation. Glob Change Biol Bioenergy 1(4):282-96. doi:10.-111/?j.-757-1707.-009.-1019.?x CrossRef
    15.Ng TL, Eheart JW, Cai XM, Miguez F (2010) Modeling miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138-144. doi:10.-021/?es9039677 CrossRef PubMed
    16.Pogson M (2011) Modelling Miscanthus yields with low resolution input data. Ecol Model 222(23-4):3849-853. doi:10.-016/?j.?ecolmodel.-011.-0.-08 CrossRef
    17.Stri?evi? R, D?eletovi? Z, Djurovi? N, Cosi? M (2014) Application of the AquaCrop model to simulate the biomass of Miscanthus?×?giganteus under different nutrient supply conditions. GCB Bioenergy. doi:10.-111/?gcbb.-2206
    18.Strullu L, Beaudoin N, Garcia de Cortazar-Atauri I, Mary B (2014) Simulation of biomass and nitrogen dynamics in perennial organs and shoots of Miscanthus?×?giganteus using the STICS model. BioEnerg Res 7(4):1253-269. doi:10.-007/?s12155-014-9462-4 CrossRef
    19.Trybula EM, Cibin R, Burks JL, Chaubey I, Brouder SM, Volenec JJ (2014) Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. GCB Bioenergy. doi:10.-111/?gcbb.-2210
    20.Brisson N, Launay M, Mary B, Beaudoin N (2008) Conceptual basis, formalisations and parameterization of the stics crop model. Quae, Versailles
    21.Coucheney E, Buis S, Launay M, Constantin J, Mary B, García Cortázar-Atauri I, Ripoche D, Beaudoin N, Ruget F, Andrianarisoa KS, Le Bas C, Justes E, Léonard J (2015) Accuracy, robustness and behavior of the
  • 作者单位:Lo?c Strullu (1)
    Fabien Ferchaud (1)
    Nicola Yates (2)
    Ian Shield (2)
    Nicolas Beaudoin (1)
    I?aki Garcia de Cortazar-Atauri (3)
    Alain Besnard (4)
    Bruno Mary (1)

    1. INRA, UR1158 AgroImpact, Site de Laon, P?le du Griffon, 180 rue Pierre-Gilles de Gennes, 02000, Barenton-Bugny, France
    2. Rothamsted Research, Harpenden, AL5 2JQ, UK
    3. INRA, US 1116 AGROCLIM, 84914, Avignon, France
    4. ARVALIS -Institut du Végétal La Jaillière, 44370, La Chapelle St Sauveur, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Biochemical Engineering
    Bioorganic Chemistry
  • 出版者:Springer New York
  • ISSN:1939-1242
文摘
Development and use of models to predict and study the production and the environmental impacts of biomass cropping systems are of great interest for their sustainable development. Improvements were made to the research version of the STICS crop–soil model in order to simulate biomass production and environmental impacts of Miscanthus?×-em class="EmphasisTypeItalic ">giganteus cropping systems in the long term. This research version was then validated on a large database and in various pedoclimatic environments in France and UK. The model accurately simulated biomass production and nitrogen (N) content in aboveground biomass, from planting until 4 to 20 years of cultivation. The model efficiency (EF) was 0.80 and 0.64 for biomass and N content, respectively, and the values of relative RMSE were 23 and 31 %. Soil water and mineral N contents were also satisfactorily predicted (EF--.96 and 0.42; relative RMSE--0 and 72 %). The model accurately reproduced the effect of management practices on the harvested biomass and N export. Yield gap analysis using simulations with and without active stresses revealed that Miscanthus?×-em class="EmphasisTypeItalic ">giganteus biomass production was limited by both water and N availability during the establishment phase but mainly limited by water availability during the post-establishment phase. The STICS crop–soil model can accurately predict Miscanthus?×-em class="EmphasisTypeItalic ">giganteus biomass production and environmental impacts such as water drainage and nitrate leaching and compare strategies with varying N fertilization, irrigation and harvest date. Keywords Miscanthus Model STICS Nitrogen stress Water stress Yield gap

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700