Metabolic profile of mixed culture acidogenic fermentation of lignocellulosic residues and the effect of upstream substrate fractionation by steam explosion
详细信息    查看全文
  • 作者:Anastasios Perimenis ; Ingrid M. van Aarle…
  • 关键词:Steam explosion ; Mixed culture fermentation ; Acidogenesis ; Lignocellulose ; Volatile fatty acids ; Cascade biorefining
  • 刊名:Biomass Conversion and Biorefinery
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:6
  • 期:1
  • 页码:25-37
  • 全文大小:903 KB
  • 参考文献:1.Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Technol 100:2562–2568
    2.Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900CrossRef
    3.Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6:465–482CrossRef
    4.Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
    5.Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
    6.Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 9:162–1651CrossRef
    7.Guo P, Mochidzuki K, Cheng W, Zhou M, Gao H, Zheng D, Wang X, Cui Z (2011) Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium. Bioresour Technol 102:7526–7531CrossRef
    8.Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crop Prod 31:28–33CrossRef
    9.Viola E, Zimbardi F, Cardinale M, Cardinale G, Braccio G, Gambacorta E (2008) Processing cereal straws by steam explosion in a pilot plant to enhance digestibility in ruminants. Bioresour Technol 99:681–689CrossRef
    10.Wang J, Yue ZB, Chen TH, Peng SC, Yu HQ, Chen HZ (2010) Anaerobic digestibility and fiber composition of bulrush in response to steam explosion. Bioresour Technol 101:6610–6614CrossRef
    11.Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871CrossRef
    12.Sabiha-Hanim S, Mohd Noor MA, Rosma A (2015) Fractionation of oil palm frond hemicelluloses by water or alkaline impregnation and steam explosion. Carbohydr Polym 115:533–539CrossRef
    13.Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenergy 61:254–264CrossRef
    14.Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351CrossRef
    15.de la Rubia MA, Raposo F, Rincón B, Borja R (2009) Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol 100:4133–4138CrossRef
    16.Doğan E, Demirer GN (2009) Volatile fatty acid production from organic fraction of municipal solid waste through anaerobic acidogenic digestion. Environ Eng Sci 26:1443–1450CrossRef
    17.Kim W, Hwang K, Shin SG, Lee S, Hwang S (2010) Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum. Bioresour Technol 101(Suppl 1):S17–22CrossRef
    18.Alkaya Eand Demirer GN (2011) Anaerobic acidification of sugar-beet processing wastes: Effect of operational parameters. Biomass Bioenergy 35:32–39CrossRef
    19.Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99CrossRef
    20.Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174CrossRef
    21.Zacharof MP, Lovitt RW (2013) Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valor 4:557–581CrossRef
    22.Temudo MF, Poldermans R, Kleerebezem R, van Loosdrecht MCM (2008) Glycerol fermentation by (open) mixed cultures: A chemostat study. Biotechnol Bioeng 100:1088–1098CrossRef
    23.Schmidt JK, Riedele C, Regestein L, Rausenberger J, Reichl U (2011) A novel concept combining experimental and mathematical analysis for the identification of unknown interspecies effects in a mixed culture. Biotechnol Bioeng 108:1900–1911CrossRef
    24.Reisinger M, Tirpanalan O, Prückler M, Huber F, Kneifel W, Novalin S (2013) Wheat bran biorefinery - A detailed investigation on hydrothermal and enzymatic treatment. Bioresour Technol 144:179–185CrossRef
    25.Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T (2014) Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J 9:483–492CrossRef
    26.Mayer F, Gerin P, Noo A et al (2014) Assessment of energy crops alternative to maize for biogas production in the Greater Region. Bioresour Technol 166:358–367CrossRef
    27.Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77:47–54CrossRef
    28.Vignon MR, Garcia-Jaldon C, Dupeyre D (1995) Steam explosion of woody hemp chènevotte. Int J BiolMacromol 17:395–404CrossRef
    29.Liu H, Wang J, Liu X, Fu B, Chen J, Yu HQ (2012) Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res 46:799–807CrossRef
    30.Clescerl LS, Greenberg AE, Eaton AD (1999) Standard Methods for Examination of Water & Wastewater, 20th edn. Am Public Health Assoc, Washington, DC
    31.Escarnot E, Agneessens R, Wathelet B, Paquot M (2010) Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem 122:857–863CrossRef
    32.Vanderghem C, Brostaux Y, Jacquet N, Blecker C, Paquot M (2012) Optimization of formic/acetic acid delignification of Miscanthus × giganteus for enzymatic hydrolysis using response surface methodology. Ind Crop Prod 35:280–286CrossRef
    33.Combo AMM, Aguedo M, Quiévy N, Danthine S, Goffin D, Jacquet N, Blecker C, Devaux J, Paquot M (2013) Characterization of sugar beet pectic-derived oligosaccharides obtained by enzymatic hydrolysis. Int J Biol Macromol 148:52–156
    34.Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299CrossRef
    35.Chang J, Cheng W, Yin Q, Zuo R, Song A, Zheng Q, Wang P, Wang X, Liu J (2012) Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover. Bioresour Technol 104:587–592CrossRef
    36.Estevez MM, Linjordet R, Morken J (2012) Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour Technol 104:749–756CrossRef
    37.Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS (1996) Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria. Bioresour Technol 58:107–113CrossRef
    38.Chen Y, Jiang S, Yuan H, Zhou Q, Gu G (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res 41:683–689CrossRef
    39.Rajagopal R, Béline F (2011) Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential. Bioresour Technol 102:5653–5658CrossRef
    40.Bruni E, Jensen AP, Angelidaki I (2010) Steam treatment of digested biofibers for increasing biogas production. Bioresour Technol 101:7668–7671CrossRef
    41.Borja R, Sánchez E, Rincón B, Raposo R, Martı́n MA, Martı́n A (2005) Study and optimisation of the anaerobic acidogenic fermentation of two-phase olive pomace. Process Biochem 40:281–291CrossRef
    42.Horiuchi JI, Shimizu T, Tada K, Kanno T, Kobayashi M (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82:209–213CrossRef
    43.Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biotechnol 79:673–677CrossRef
    44.Han SK, Shin SH (2002) Enhanced acidogenic fermentation of food waste in a continuous-flow reactor. Waste Manag Res 20:110–118CrossRef
    45.Jones DTand Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524
    46.Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic Digestion Model No 1 (ADM1). IWA Publishing, London
    47.Batstone DJ and Jensen PD (2011) Anaerobic Processes. In:Wilderer P (ed) Treatise on water science. Elsevier, Oxford, pp 615‑639
    48.Bengtsson S, Hallquist J, Werker A, Welander T (2008) Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem Eng J 40:492–499CrossRef
    49.Traverso P, Pavan P, Bolzonella D, Innocenti L, Cecchi F, Mata-Alvarez J (2000) Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation 11:407–414CrossRef
    50.Paulova L, Pátákova P, Branská B, Rychtera M, Melzoch K (2014) Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol Adv. doi:10.​1016/​j.​biotechadv.​2014.​12.​002
    51.López-Garzón CS, Straathof AJJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32:873–904CrossRef
  • 作者单位:Anastasios Perimenis (1)
    Ingrid M. van Aarle (1)
    Thomas Nicolay (1)
    Nicolas Jacquet (2)
    Laurence Meyer (2)
    Aurore Richel (2)
    Patrick A. Gerin (1)

    1. Bioengineering Group, Earth and Life Institute-Applied Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.19, 1348, Louvain-la-Neuve, Belgium
    2. Unit of Biological and Industrial Chemistry, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
  • 刊物类别:Engineering
  • 刊物主题:Biotechnology
    Renewable and Green Energy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2190-6823
文摘
Lignocellulosic biomass residues have attracted attention for the sustainable production of molecules for material and energetic use through biochemical conversion. Their recalcitrant structure prevents a broader use and asks for the development of sustainable techniques that can efficiently separate, recover and valorize the constituting components. In a cascading concept, residual streams of such processes can be further exploited in an attempt to valorize the largest possible fraction of the initial material. Three lignocellulosic substrates, namely dried sugar beet pulp, wheat bran and miscanthus straw, were upstream fractionated by steam explosion to extract the hemicellulose fraction. This study evaluated the valorization of the residual solid fraction through mixed acidogenic fermentation for the production of volatile fatty acids (VFA) as platform chemicals. Batch experiments have been conducted for the reference material (non-treated) and the solid fraction remaining after steam explosion, with and without the addition of an external mixed inoculum. Steam explosion residues contained less hemicellulose than the initial materials. The difference in the fermentation profile between steam explosion residues and non-treated substrates is dependent on the substrate. Maximum total VFA (tVFA) concentration was 18.8 gCOD/kgmixed_liquor, and maximum yield of chemical oxygen demand (COD) conversion into tVFA was 33 % for the case of non-treated inoculated beet pulp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700