Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria
详细信息    查看全文
  • 作者:Fernanda P. do Amaral ; Vânia C. S. Pankievicz…
  • 关键词:Brachypodium distachyon ; Plant ; beneficial bacteria interaction ; Azospirillum brasilense ; Herbaspirillum seropedicae
  • 刊名:Plant Molecular Biology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:90
  • 期:6
  • 页码:689-697
  • 全文大小:847 KB
  • 参考文献:Amaral FP et al (2014) Gene expression analysis of maize seedlings (DKB240 variety) inoculated with plant growth promoting bacterium Herbaspirillum seropedicae. Symbiosis 62:41–50CrossRef
    Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570CrossRef PubMed
    Baldani JI et al (1986) Characterization of Herbaspirillum seropedicae gen-nov, sp-nov, a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36(1):86–93CrossRef
    Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577CrossRef PubMed
    Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13CrossRef PubMed
    Bluemke A et al (2015) Reduced susceptibility to Fusarium head blight in Brachypodium distachyon through priming with the Fusarium mycotoxin deoxynivalenol. Mol Plant Pathol 16(5):472–483CrossRef
    Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10(4):e1004283. doi:10.​1371/​journal.​pgen.​100428 CrossRef PubMed PubMedCentral
    Brkljacic J et al (2011) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157(1):3–13CrossRef PubMed PubMedCentral
    Brusamarello-Santos LCC (2013) Análise do transcriptoma total de raízes de plântulas de arroz (Oryza sativa L.) colonizadas por Herbaspirillum seropedicae SmR1. Dissertation. Federal University of Curitiba, Brazil
    Brusamarello-Santos LCC et al (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356(1–2):113–125CrossRef
    Brutnell TP et al (2010) Setaria viridis: a model for C-4 photosynthesis. Plant Cell 22(8):2537–2544CrossRef PubMed PubMedCentral
    Brutnell T, Bennetzen J, Vogel J (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485CrossRef PubMed
    Camilios-Neto D et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genom 15(378):1471–2164
    Dobbelaere S et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28(9):871–879
    Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149CrossRef
    Dobereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum-Lipoferum Beijerinck. Can J Microbiol 22(10):1464–1473CrossRef PubMed
    Draper J et al (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555CrossRef PubMed PubMedCentral
    Ferrari CS et al (2014) Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) Roots-bacteria interaction revealed using proteomics. Appl Biochem Biotech 174(6):2267–2277CrossRef
    Gagne-Bourque F et al (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS ONE 10(6):e0130456. doi:10.​1371/​journal.​pone.​0130456 CrossRef PubMed PubMedCentral
    Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33(5):410–415CrossRef
    Haney C et al (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:1–9. doi:10.​1038/​nplants.​2015.​51
    James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119CrossRef
    James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15(9):894–906CrossRef PubMed
    Klassen G et al (1997) Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can J Microbiol 43(9):887–891CrossRef
    Machado HB et al (1991) Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can J Microbiol 37:549–553CrossRef
    Mitter B et al (2013) Advances in elucidating Beneficial interactions between plants, soil, and bacteria. Adv Agron 121:381–445CrossRef
    Monteiro RA et al (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31(4):932–937CrossRef
    Moutia JFY et al (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337(1–2):233–242CrossRef
    Pacheco-Villalobos D, Hardtke CS (2012) Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Philos Trans R Soc B Biol Sci 367(1595):1552–1558CrossRef
    Pankievicz VCS et al (2015) Robust biological nitrogen fixation in a model grass-bacterial association. Plant J 81:907–919CrossRef PubMed
    Pereira TP et al (2014) Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae Strain SmR1 in Maize Roots. Mol Biotechnol 56(7):660–670PubMed
    Philippot L et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799CrossRef PubMed
    Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443CrossRef PubMed
    Richardson AE et al (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRef
    Sandoya GV, Buanafina MMO (2014) Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiol Mol Plant Pathol 85:53–64CrossRef
    Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767CrossRef PubMed PubMedCentral
    Schmidt MA et al (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44(3):182–185CrossRef PubMed
    Shi H et al (2015) Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta PhysiolPlant 37(6). doi:10.​1007/​s11738-015-1873-0
    Souza E et al (2014) Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc. doi:10.​1186/​1753-6561-8-S4-O23
    Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506CrossRef PubMed
    Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24(8):967–980CrossRef PubMed
    Vain P (2011) Brachypodium as a model system for grass research. J Cereal Sci 54(1):1–7CrossRef
    Vargas L et al (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356(1–2):127–137CrossRef
    Verelst W et al (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6(2):311–322CrossRef PubMed
    Verhagen BWM et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17(8):895–908CrossRef PubMed
    Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463(7282):763–768CrossRef
    Zamioudis C et al (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol 162(1):304–318CrossRef PubMed PubMedCentral
  • 作者单位:Fernanda P. do Amaral (1)
    Vânia C. S. Pankievicz (2)
    Ana Carolina M. Arisi (3)
    Emanuel M. de Souza (2)
    Fabio Pedrosa (2)
    Gary Stacey (1)

    1. Divisions of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
    2. Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, 81531-980, Brazil
    3. Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, 88034-001, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5028
文摘
Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700