Development of 70/30 Poly-L-DL-Lactic Acid Filaments for 3D Printers (Part 2): Mechanical and Surface Properties of Bioabsorbable Printed Plates for Biomedical Applications
详细信息    查看全文
  • 作者:Daniel J. Fernandes ; Rafael Vidal ; Ariel Assayag ; Ronaldo S. de Biasi…
  • 刊名:JOM
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:69
  • 期:1
  • 页码:78-83
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Engineering, general; Chemistry/Food Science, general; Physics, general; Environment, general; Earth Sciences, general;
  • 出版者:Springer US
  • ISSN:1543-1851
  • 卷排序:69
文摘
The mechanical, chemical, roughness and wettability properties of 70/30 poly (L,DL-lactide acid) three-dimensional (3D)-printed surgical plates made with extruded polymer filaments developed in the first part of this work were investigated. The plates were printed with horizontal (HRZ) and vertical (VRT) running layer orientations and evaluated by tensile, Fourier transform infrared (FTIR), optical perfilometry and wettability tests before and after degradation in simulated body fluid (SBF) for 21 days. The results show that the ultimate tensile strength (UTS) of HRZ plates before immersion in SBF was higher (34.1 MPa) than that of VRT plates (31.8 MPa). The Young’s modulus (E) of HRZ plates and VRT plates are similar (4 GPa). After immersion in SBF, the UTS of HRZ plates dropped to 20.5 MPa and E decreased to 3.3 GPa. VRT were not tested after SBF immersion due to the large degradation. FTIR analysis showed no evidence of chemical change in the plates after immersion in SBF. The roughness parameter R3z of VRT surfaces (19.54 µm) was higher than that of the HRZ surfaces (12.80 µm). The roughness parameters increased after degradation in SBF (p = 0.7048). The contact angles of HRZ surfaces before immersion in SBF (66.28°) were higher than after immersion in SBF (18.12°); the same behavior was also observed in VRT plates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700